Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000665

RESUMEN

Porous silicon dioxide (SiO2)/poly(vinylidene fluoride) (PVdF), SiO2/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO2 sol-gel/PVdF. The nanofibers of the SiO2/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO2 component. The thickness of the SiO2 skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO2 and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.

2.
Polymers (Basel) ; 15(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242846

RESUMEN

This research aimed to develop a simple and cost-effective method for fabricating electropositive membranes for highly efficient water filtration. Electropositive membranes are novel functional membranes with electropositive properties and can filter electronegative viruses and bacteria using electrostatic attraction. Because electropositive membranes do not rely on physical filtration, they exhibit high flux characteristics compared with conventional membranes. This study presents a simple dipping process for fabricating boehmite/SiO2/PVDF electropositive membranes by modifying an electrospun SiO2/PVDF host membrane using electropositive boehmite nanoparticles (NPs). The surface modification enhanced the filtration performance of the membrane, as revealed by electronegatively charged polystyrene (PS) NPs as a bacteria model. The boehmite/SiO2/PVDF electropositive membrane, with an average pore size of 0.30 µm, could successfully filter out 0.20 µm PS particles. The rejection rate was comparable to that of Millipore GSWP, a commercial filter with a pore size of 0.22 µm, which can filter out 0.20 µm particles via physical sieving. In addition, the water flux of the boehmite/SiO2/PVDF electropositive membrane was twice that of Millipore GSWP, demonstrating the potential of the electropositive membrane in water purification and disinfection.

3.
Polymers (Basel) ; 10(4)2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-30966471

RESUMEN

To construct a polyetherimide (PEI)-reinforced polyvinylidene fluoride (PVdF) composite membrane with multicore-shell structure, a ternary solution was prepared and electrospun by single-nozzle electrospinning. A theoretical prediction was made for the feasibility of complete distinction of two phases. The diameters of the membrane fibers and the PEI multi-core fibrils varied with the PEI ratio and the spinning time, respectively. The tensile strength and modulus were improved to 48 MPa and 1.5 GPa, respectively. The shrinkage of the membrane was only 6.6% at 180 °C, at which temperature the commercial PE separator melted down. The reinforcement in mechanical and thermal properties is associated with multiple PEI nanofibrils oriented along the fiber axis. Indeed, the unique morphology of self-assembled multicore-shell fibers plays an important role in their properties. All in all, PEI/PVdF membranes are appropriate for a lithium-ion battery application due to their high mechanical strength, excellent thermal stability, and controllable textural properties.

4.
Sci Rep ; 7: 41190, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28106126

RESUMEN

Amorphous molybdenum sulfide (MoSx) is covalently anchored to reduced graphene oxide (r-GO) via a simple one-pot reaction, thereby inducing the reduction of GO and simultaneous doping of heteroatoms on the GO. The oxygen atoms form a bridged between MoSx and GO and play a crucial role in the fine dispersion of the MoSx particles, control of planar MoSx growth, and increase of exposed active sulfur sites. This bridging leads to highly efficient (-157 mV overpotential and 41 mV/decade Tafel slope) and stable (95% versus initial activity after 1000 cycles) electrocatalyst for hydrogen evolution.

5.
Sci Rep ; 6: 27330, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27349719

RESUMEN

An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100-130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130-140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization.

6.
Sci Rep ; 6: 36977, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27833132

RESUMEN

Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO2) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB.

7.
Chem Commun (Camb) ; 51(13): 2718-20, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25575123

RESUMEN

This research demonstrates a simple method for synthesizing titanium dioxide nanoparticle-decorated carbon nanofibers. These nanofibers showed highly efficient degradation of methylene blue under UV light because of the synergistic effects of the large surface-active sites of titanium dioxide nanoparticles and the carbon nanofibers on the photocatalytic properties.

8.
ACS Appl Mater Interfaces ; 5(6): 2053-61, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23394268

RESUMEN

Aqueous dispersible nanohybrids (NHBs) of graphene nanosheets (GNSs) and Pt nanoparticles (Pt-NPs) were synthesized through the one-pot reduction of their precursors using an environmentally benign chemical, vitamin C. The concurrent reduction of the precursors, which includes graphene oxide (GO) to GNS and H2PtCl6 to Pt(0), was facile and efficient to yield GNS/Pt-NHBs in which face-centered cubic (fcc) crystalline Pt-NPs with average diameters of ~5 nm were robustly attached on the surface of the GNSs. The conversion yield during Pt reduction was fairly high (∼90%) and the Pt content within the NHBs was easily controllable. The resulting stable aqueous colloidal dispersion of GNS/Pt-NHBs was successfully fabricated as thin films without using any binder by the electro-spray method at room temperature, and the fabricated samples were used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The electrocatalytic activity of the NHBs for I(-)/I3(-) redox couples in conventional DSSCs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis. Doping of GNSs with small amounts of Pt-NPs (<10 wt %) could dramatically enhance the redox kinetics. The enhanced electrocatalytic activity of the GNS/Pt-NHBs was reflected in the performance of the DSSCs. The power conversion efficiency of optimized DSSCs using the NHB-CEs was 8.91% (VOC: 830 mV, JSC: 15.56 mAcm(-2), and FF: 69%), which is comparable to that of devices using the state-of-the-art Pt-based CEs (8.85%).


Asunto(s)
Colorantes/química , Electrodos , Grafito/química , Nanotecnología/métodos , Energía Solar , Espectroscopía Dieléctrica , Nanopartículas/química
9.
Sci Rep ; 3: 3520, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24343425

RESUMEN

We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2-4 mScm⁻¹) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices.

10.
ACS Appl Mater Interfaces ; 4(6): 3308-15, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22658770

RESUMEN

Hierarchically structured TiO2 (HS-TiO2) was prepared on a flexible ITO-PEN (polyethylene naphthalate) substrate via electrospray deposition using a commercially available TiO2 nanocrystalline powder in order to fabricate flexible DSSCs under low-temperature (<150 °C) conditions. The cell efficiency increased when using flexible ITO-PEN substrates post-treated by either a mechanical compression treatment or a chemical sintering treatment using titanium n-tetrabutoxide (TTB). The mechanical compression treatment reduced the surface area and porosity of the HS-TiO2; however, this treatment improved the interparticle connectivity and physical adhesion between the HS-TiO2 and ITO-PEN substrate, which increased the photocurrent density of the as-pressed HS-TiO2 cells. The electron diffusion coefficients of the as-pressed HS-TiO2 improved upon compression treatment, whereas the recombination lifetimes remained unchanged. An additional chemical sintering post-treatment involving TTB was tested for its effects on DSSC efficiency. The freshly coated TiO2 submitted to TTB hydrolysis in water at 100 °C yielded an anatase phase. TTB treatment of the HS-TiO2 cell after compression treatment yielded faster electron diffusion, providing an efficiency of 5.57% under 100 mW cm(-2), AM 1.5 global illumination.


Asunto(s)
Energía Solar , Titanio/química , Frío , Colorantes/química , Electrodos , Polietilenos/química , Compuestos de Estaño/química
11.
ACS Appl Mater Interfaces ; 4(7): 3500-7, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22724560

RESUMEN

Highly efficient cathodes for dye-sensitized solar cells (DSSCs) were developed using thin films of graphene nanosheets (GNS), which were fabricated by the electrospray method (e-spray) using aqueous dispersions of chemically driven GNS. The e-sprayed GNS films had the appropriate properties to be an efficient counter electrode (CE) for DSSCs; sufficient electrocatalytic activity for I(-)/I3(-) redox couples and low charge transfer resistance (RCT) at the CE/electrolyte interface as characterized by cyclic voltammetry and electrochemical impedance analysis. The performance of the GNS film based CEs was optimized by manipulating the density of surface chemical functional groups and plane conjugation of GNS via post thermal annealing (TA). Upon TA, the oxygen-containing surface functional groups, which have been shown to improve electrocatalytic activity of carbon based materials, were significantly reduced, while the electrical conductivity was enhanced by ∼40 times. The improvement of electrocatalytic activity and fill factor (FF) with reduced RCT of DSSCs after TA was primarily attributed to the increased charge transport within the GNS films, while the chemically prepared GNS typically contained sufficient defects, edges and surface functional groups for electrocatalysis. The performance of the DSSCs using our GNS-CEs was nearly identical (>95%) to the DSSCs using the state-of-the-art CE, thermolytically prepared Pt crystals. Our e-sprayed GNS-CE based DSSCs had a higher FF (69.7%) and cell efficiency (6.93%) when compared previously reported graphene based CEs for DSSCs, demonstrating the outstanding properties of graphene as the electrodes in electrochemical devices.

12.
ACS Appl Mater Interfaces ; 3(7): 2719-25, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21644555

RESUMEN

We report a simple method to prepare hierarchically structured TiO(2) spheres (HS-TiO(2)), using an electrostatic spray technique, that are utilized for photoelectrodes of highly efficient dye-sensitized solar cells (DSSCs). This method has an advantage to remove the synthesis steps in conventional sol-gel method to form nano-sized spheres of TiO(2) nanoclusters. The fine dispersion of commercially available nanocrystalline TiO(2) particles (P25, Degussa) in EtOH without surfactants and additives is electro-sprayed directly onto a fluorine-dopoed tin-oxide (FTO) substrate for DSSC photoelectrodes. The DSSCs of HS-TiO(2) photoelectrodes show high energy conversion efficiency over 10% under illumination of light at 100 mW cm(-2), AM1.5 global. It is concluded from frequency-dependent measurements that the faster electron diffusion coefficient and longer lifetime of HS-TiO(2) than those in nonstructured TiO(2) contribute to the enhanced efficiency in DSSCs.

13.
ACS Appl Mater Interfaces ; 3(5): 1385-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21476592

RESUMEN

Submicroscale SiC fiber mats were prepared by the electrospinning of an oil-in-water(O/W) precursor emulsion, a subsequent thermal curing treatment, and calcination at 1600 °C. Low-molecular-weight PCS micelles entrapped within an aqueous PVP matrix played an important role in forming the continuous and dense core structure, resulting in pure SiC fibers. The manipulation of SiC fiber diameters could be obtained via control of the micellar PCS concentration (10-30 wt %), enabling the production of dense and highly crystallized SiC fiber architectures with diameters ranging from 200 to 350 nm.

14.
ACS Appl Mater Interfaces ; 3(5): 1521-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21452819

RESUMEN

High-performance, room-temperature (RT), solid-state dye-sensitized solar cells (DSSCs) were fabricated using hierarchically structured TiO2 nanofiber (HS-NF) electrodes and plastic crystal (PC)-based solid-state electrolytes. The electrospun HS-NF photoelectrodes possessed a unique morphology in which submicrometer-scale core fibers are interconnected and the nanorods are dendrited onto the fibers. This nanorod-in-nanofiber morphology yielded porosity at both the mesopore and macropore level. The macropores, steming from the interfiber space, afforded high pore volumes to facilitate the infiltration of the PC electrolytes, whereas the mesoporous nanorod dendrites offered high surface area for enhanced dye loading. The solid-state DSSCs using HS-NFs (DSSC-NF) demonstrated improved power conversion efficiency (PCE) compared to conventional TiO2 nanoparticle (NP) based DSSCs (DSSC-NP). The improved performance (>2-fold) of the DSSC-NFs was due to the reduced internal series resistance (R(s)) and the enhanced charge recombination lifetime (τ(r)) determined by electrochemical impedance spectroscopy and intensity modulated photocurrent/photovoltage spectroscopy. The easy penetration of the PC electrolytes into HS-NF layers via the macropores reduces R(s) significantly, improving the fill factor (FF) of the resulting DSSC-NFs. The τ(r) difference between the DSSC-NF and DSSC-NP in the PC electrolytes was extraordinary (~14 times) compared to reported results in conventional organic liquid electrolytes. The optimized PCE of DSSC-NF using the PC electrolytes was 6.54, 7.69, and 7.93% at the light intensity of 100, 50, and 30 mW cm⁻², respectively, with increased charge collection efficiency (>40%). This is the best performing RT solid-state DSSC using a PC electrolyte. Considering the fact that most reported quasi-solid state or nonvolatile electrolytes require higher iodine contents for efficient ion transport, our HS-NFs are a promising morphology for such electrolytes that have limited ion mass transport.

15.
ACS Nano ; 4(6): 3503-9, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20509667

RESUMEN

Water-soluble, polyelectrolyte-grafted multiwalled carbon nanotubes (MWCNTs), MWCNT-g-PSSNa, were synthesized using a "grafting to" route. MWCNT-g-PSSNa thin films fabricated by an electrostatic spray (e-spray) technique were used as the counter electrode (CE) for dye-sensitized solar cells (DSSCs). The e-sprayed MWCNT-g-PSSNa thin-film-based CEs (MWCNT-CE) were uniform over a large area, and the well-exfoliated MWCNTs formed highly interconnected network structures. The electrochemical catalytic activity of the MWCNT-CE at different thicknesses was investigated. The MWCNT-g-PSSNa thin film showed high efficiency as a CE in DSSCs. The power conversion efficiency (PCE) of the DSSCs using the MWCNT-g-PSSNa thin-film-based CE (DSSC-MWCNT) was >6% at a CE film thickness of approximately 0.3 microm. The optimum PCE was >7% at a film thickness of approximately 1 microm, which is 20-50 times thinner than conventional carbon-based CE. The charge transfer resistance at the MWCNT-CE/electrolyte interface was 1.52 Omega cm(2) at a MWCNT-CE thickness of 0.31 microm, which is lower than that of a Pt-CE/electrolyte interface, 1.78 Omega cm(2). This highlights the potential for the low-cost CE fabrication of DSSCs using a facile deposition technique from an environmentally "friendly" solution at low temperatures.


Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Electrodos , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Energía Solar , Agua/química , Cristalización/métodos , Electrólitos/química , Diseño de Equipo , Análisis de Falla de Equipo , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Solubilidad
16.
Nano Lett ; 6(9): 2009-13, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16968017

RESUMEN

Nanostructured semiconducting metal oxides and particularly single nanowire devices offer exceptional gas sensitivity but at the expense of statistical variations and excessive noise levels. In this study TiO2/poly(vinyl acetate) composite nanofiber mats were directly electrospun onto interdigitated Pt electrode arrays, hot pressed at 120 degrees C, and calcined at 450 degrees C. This resulted in a novel multiple nanowire network composed of sheaths of 200-500 nm diameter cores filled with readily gas accessible approximately 10 nm thick single-crystal anatase fibrils. TiO2 nanofiber sensors tested for NO2, in dry air, exhibited exceptional sensitivity showing with, for example, a 833% increase in sensor resistance when exposed to 500 ppb NO2 at 300 degrees C, consistent with a detection limit estimated to be well below 1 ppb. Unusual response patterns were observed at high NO2 concentrations (> 12.5 ppm), consistent with n to p inversion of the surface-trap limited conduction facilitated by the high surface-to-volume ratio of this material.


Asunto(s)
Cristalización/métodos , Electroquímica/instrumentación , Nanotubos/química , Óxido Nítrico/análisis , Óxido Nítrico/química , Titanio/química , Transductores , Impedancia Eléctrica , Electroquímica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanotubos/ultraestructura , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA