RESUMEN
Mitochondria require nicotinamide adenine dinucleotide (NAD+) to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD+ transporters have been identified in yeast and plants1,2, but their existence in mammals remains controversial3-5. Here we demonstrate that mammalian mitochondria can take up intact NAD+, and identify SLC25A51 (also known as MCART1)-an essential6,7 mitochondrial protein of previously unknown function-as a mammalian mitochondrial NAD+ transporter. Loss of SLC25A51 decreases mitochondrial-but not whole-cell-NAD+ content, impairs mitochondrial respiration, and blocks the uptake of NAD+ into isolated mitochondria. Conversely, overexpression of SLC25A51 or SLC25A52 (a nearly identical paralogue of SLC25A51) increases mitochondrial NAD+ levels and restores NAD+ uptake into yeast mitochondria lacking endogenous NAD+ transporters. Together, these findings identify SLC25A51 as a mammalian transporter capable of importing NAD+ into mitochondria.
Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , Animales , Transporte Biológico , Línea Celular , Respiración de la Célula/genética , Prueba de Complementación Genética , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Catión Orgánico/deficiencia , Proteínas de Transporte de Catión Orgánico/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
OBJECTIVE: Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with the majority of cases initiated by inactivation of the APC tumour suppressor. This results in the constitutive activation of canonical WNT pathway transcriptional effector ß-catenin, along with induction of WNT feedback inhibitors, including the extracellular palmitoleoyl-protein carboxylesterase NOTUM which antagonises WNT-FZD receptor-ligand interactions. Here, we sought to evaluate the effects of NOTUM activity on CRC as a function of driver mutation landscape. DESIGN: Mouse and human colon organoids engineered with combinations of CRC driver mutations were used for Notum genetic gain-of-function and loss-of-function studies. In vitro assays, in vivo endoscope-guided orthotopic organoid implantation assays and transcriptomic profiling were employed to characterise the effects of Notum activity. Small molecule inhibitors of Notum activity were used in preclinical therapeutic proof-of-principle studies targeting oncogenic Notum activity. RESULTS: NOTUM retains tumour suppressive activity in APC-null adenomas despite constitutive ß-catenin activity. Strikingly, on progression to adenocarcinoma with P53 loss, NOTUM becomes an obligate oncogene. These phenotypes are Wnt-independent, resulting from differential activity of NOTUM on glypican 1 and 4 in early-stage versus late-stage disease, respectively. Ultimately, preclinical mouse models and human organoid cultures demonstrate that pharmacological inhibition of NOTUM is highly effective in arresting primary adenocarcinoma growth and inhibiting metastatic colonisation of distal organs. CONCLUSIONS: Our findings that a single agent targeting the extracellular enzyme NOTUM is effective in treating highly aggressive, metastatic adenocarcinomas in preclinical mouse models and human organoids make NOTUM and its glypican targets therapeutic vulnerabilities in advanced CRC.
Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Vía de Señalización Wnt/genética , Cateninas/genética , Cateninas/metabolismo , Cateninas/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genéticaRESUMEN
Cellular senescence is accompanied by dramatic changes in chromatin structure and gene expression. Using Saccharomyces cerevisiae mutants lacking telomerase (tlc1Δ) to model senescence, we found that with critical telomere shortening, the telomere-binding protein Rap1 (repressor activator protein 1) relocalizes to the upstream promoter regions of hundreds of new target genes. The set of new Rap1 targets at senescence (NRTS) is preferentially activated at senescence, and experimental manipulations of Rap1 levels indicate that it contributes directly to NRTS activation. A notable subset of NRTS includes the core histone-encoding genes; we found that Rap1 contributes to their repression and that histone protein levels decline at senescence. Rap1 and histones also display a target site-specific antagonism that leads to diminished nucleosome occupancy at the promoters of up-regulated NRTS. This antagonism apparently impacts the rate of senescence because underexpression of Rap1 or overexpression of the core histones delays senescence. Rap1 relocalization is not a simple consequence of lost telomere-binding sites, but rather depends on the Mec1 checkpoint kinase. Rap1 relocalization is thus a novel mechanism connecting DNA damage responses (DDRs) at telomeres to global changes in chromatin and gene expression while driving the pace of senescence.
Asunto(s)
Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Histonas/genética , Viabilidad Microbiana , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , TranscriptomaRESUMEN
Vascular complications such as bleeding due to gastrointestinal telangiectatic anomalies, pulmonary arteriovenous malformations, hepatopulmonary syndrome, and retinal vessel abnormalities are being reported in patients with telomere biology disorders (TBDs) more frequently than previously described. The international clinical care consortium of telomere-associated ailments and family support group Dyskeratosis Congenita Outreach, Inc. held a workshop on vascular abnormalities in the TBDs at the National Cancer Institute in October 2017. Clinicians and basic scientists reviewed current data on vascular complications, hypotheses for the underlying biology and developed new collaborations to address the etiology and clinical management of vascular complications in TBDs.
Asunto(s)
Fístula Arteriovenosa , Arteria Pulmonar/anomalías , Venas Pulmonares/anomalías , Telangiectasia , Telómero , Animales , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/patología , Educación , Humanos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Venas Pulmonares/metabolismo , Venas Pulmonares/patología , Telangiectasia/genética , Telangiectasia/metabolismo , Telangiectasia/patología , Telómero/genética , Telómero/metabolismo , Telómero/patologíaRESUMEN
Many histone acetyltransferases undergo autoacetylation, either through chemical or enzymatic means, to potentiate enzymatic cognate substrate lysine acetylation, although the mode and molecular role of such autoacetylation is poorly understood. The MYST family of histone acetyltransferases is autoacetylated at an active site lysine residue to facilitate cognate substrate lysine binding and acetylation. Here, we report on a detailed molecular investigation of Lys-274 autoacetylation of the human MYST protein Males Absent on the First (hMOF). A mutational scan of hMOF Lys-274 reveals that all amino acid substitutions of this residue are able to bind cofactor but are significantly destabilized, both in vitro and in cells, and are catalytically inactive for cognate histone H4 peptide lysine acetylation. The x-ray crystal structure of a hMOF K274P mutant suggests that the reduced stability and catalytic activity stems from a disordering of the residue 274-harboring a α2-ß7 loop. We also provide structural evidence that a C316S/E350Q mutant, which is defective for cognate substrate lysine acetylation; and biochemical evidence that a K268M mutant, which is defective for Lys-274 chemical acetylation in the context of a K274-peptide, can still undergo quantitative K274 autoacetylation. Together, these studies point to the critical and specific role of hMOF Lys-274 autoacetylation in hMOF stability and cognate substrate acetylation and argues that binding of Ac-CoA to hMOF likely drives Lys-274 autoacetylation for subsequent cognate substrate acetylation.
Asunto(s)
Acetilcoenzima A/química , Histona Acetiltransferasas/química , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilación , Sustitución de Aminoácidos , Estabilidad de Enzimas , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Mutación Missense , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-ActividadRESUMEN
It has been proposed that guanine-rich DNA forms four-stranded structures in vivo called G-quadruplexes or G4 DNA. G4 DNA has been implicated in several biological processes, but tools to study G4 DNA structures in cells are limited. Here we report the development of novel murine monoclonal antibodies specific for different G4 DNA structures. We show that one of these antibodies designated 1H6 exhibits strong nuclear staining in most human and murine cells. Staining intensity increased on treatment of cells with agents that stabilize G4 DNA and, strikingly, cells deficient in FANCJ, a G4 DNA-specific helicase, showed stronger nuclear staining than controls. Our data strongly support the existence of G4 DNA structures in mammalian cells and indicate that the abundance of such structures is increased in the absence of FANCJ. We conclude that monoclonal antibody 1H6 is a valuable tool for further studies on the role of G4 DNA in cell and molecular biology.
Asunto(s)
ADN/química , G-Cuádruplex , Animales , Anticuerpos Monoclonales/inmunología , Núcleo Celular/genética , Cromosomas/inmunología , ADN/análisis , ADN/inmunología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/deficiencia , Humanos , RatonesRESUMEN
Cells undergoing developmental processes are characterized by persistent non-genetic alterations in chromatin, termed epigenetic changes, represented by distinct patterns of DNA methylation and histone post-translational modifications. Sirtuins, a group of conserved NAD(+)-dependent deacetylases or ADP-ribosyltransferases, promote longevity in diverse organisms; however, their molecular mechanisms in ageing regulation remain poorly understood. Yeast Sir2, the first member of the family to be found, establishes and maintains chromatin silencing by removing histone H4 lysine 16 acetylation and bringing in other silencing proteins. Here we report an age-associated decrease in Sir2 protein abundance accompanied by an increase in H4 lysine 16 acetylation and loss of histones at specific subtelomeric regions in replicatively old yeast cells, which results in compromised transcriptional silencing at these loci. Antagonizing activities of Sir2 and Sas2, a histone acetyltransferase, regulate the replicative lifespan through histone H4 lysine 16 at subtelomeric regions. This pathway, distinct from existing ageing models for yeast, may represent an evolutionarily conserved function of sirtuins in regulation of replicative ageing by maintenance of intact telomeric chromatin.
Asunto(s)
Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/metabolismo , División Celular , Cromatina/genética , Cromatina/metabolismo , Epistasis Genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Histona Acetiltransferasas , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/deficiencia , Histona Desacetilasas/metabolismo , Histonas/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/deficiencia , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Sirtuinas/antagonistas & inhibidores , Sirtuinas/deficiencia , Sirtuinas/metabolismo , Telómero/genética , Telómero/metabolismo , Transcripción GenéticaRESUMEN
The evolutionarily conserved Sgs1/Top3/Rmi1 (STR) complex plays vital roles in DNA replication and repair. One crucial activity of the complex is dissolution of toxic X-shaped recombination intermediates that accumulate during replication of damaged DNA. However, despite several years of study the nature of these X-shaped molecules remains debated. Here we use genetic approaches and two-dimensional gel electrophoresis of genomic DNA to show that Top3, unassisted by Sgs1 and Rmi1, has modest capacities to provide resistance to MMS and to resolve recombination-dependent X-shaped molecules. The X-shaped molecules have structural properties consistent with hemicatenane-related template switch recombination intermediates (Rec-Xs) but not Holliday junction (HJ) intermediates. Consistent with these findings, we demonstrate that purified Top3 can resolve a synthetic Rec-X but not a synthetic double HJ in vitro. We also find that unassisted Top3 does not affect crossing over during double strand break repair, which is known to involve double HJ intermediates, confirming that unassisted Top3 activities are restricted to substrates that are distinct from HJs. These data help illuminate the nature of the X-shaped molecules that accumulate during replication of damaged DNA templates, and also clarify the roles played by Top3 and the STR complex as a whole during the resolution of replication-associated recombination intermediates.
Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Hongos/genética , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
BACKGROUND: Mitochondrial DNA (mtDNA) deletions cause disease and accumulate during aging, yet our understanding of the molecular mechanisms underlying their formation remains rudimentary. Guanine-quadruplex (GQ) DNA structures are associated with nuclear DNA instability in cancer; recent evidence indicates they can also form in mitochondrial nucleic acids, suggesting that these non-B DNA structures could be associated with mtDNA deletions. Currently, the multiple types of GQ sequences and their association with human mtDNA stability are unknown. RESULTS: Here, we show an association between human mtDNA deletion breakpoint locations (sites where DNA ends rejoin after deletion of a section) and sequences with G-quadruplex forming potential (QFP), and establish the ability of selected sequences to form GQ in vitro. QFP contain four runs of either two or three consecutive guanines (2G and 3G, respectively), and we identified four types of QFP for subsequent analysis: intrastrand 2G, intrastrand 3G, duplex derived interstrand (ddi) 2G, and ddi 3G QFP sequences. We analyzed the position of each motif set relative to either 5' or 3' unique mtDNA deletion breakpoints, and found that intrastrand QFP sequences, but not ddi QFP sequences, showed significant association with mtDNA deletion breakpoint locations. Moreover, a large proportion of these QFP sequences occur at smaller distances to breakpoints relative to distribution-matched controls. The positive association of 2G QFP sequences persisted when breakpoints were divided into clinical subgroups. We tested in vitro GQ formation of representative mtDNA sequences containing these 2G QFP sequences and detected robust GQ structures by UV-VIS and CD spectroscopy. Notably, the most frequent deletion breakpoints, including those of the "common deletion", are bounded by 2G QFP sequence motifs. CONCLUSIONS: The potential for GQ to influence mitochondrial genome stability supports a high-priority investigation of these structures and their regulation in normal and pathological mitochondrial biology. These findings emphasize the potential importance of helicases that subsequently resolve GQ to maintain the stability of the mitochondrial genome.
Asunto(s)
ADN Mitocondrial/genética , Rotura Cromosómica , G-Cuádruplex , Eliminación de Gen , Genoma Mitocondrial , Inestabilidad Genómica , Humanos , Secuencias Invertidas RepetidasRESUMEN
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination-dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2-dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.
Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Acetilación , Epistasis Genética , Eliminación de Gen , Genes Fúngicos , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/genética , Histonas/química , Histonas/metabolismo , Modelos Biológicos , Complejos Multiproteicos , Mutación , Recombinación Genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genéticaRESUMEN
Age-related osteoporosis is characterized by a decrease in bone-forming capacity mediated by defects in the number and function of osteoblasts. An important cellular mechanism that may in part explain osteoblast dysfunction that occurs with aging is senescence of mesenchymal progenitor cells (MPCs). In the telomere-based Wrn(-/-) Terc(-/-) model of accelerated aging, the osteoporotic phenotype of these mice is also associated with a major decline in MPC differentiation into osteoblasts. To investigate the role of MPC aging as a cell-autonomous mechanism in senile bone loss, transplantation of young wild-type whole bone marrow into Wrn(-/-) Terc(-/-) mutants was performed and the ability of engrafted cells to differentiate into cells of the osteoblast lineage was assessed. We found that whole bone marrow transplantation in Wrn(-/-) Terc(-/-) mice resulted in functional engraftment of MPCs up to 42 weeks, which was accompanied by a survival advantage as well as delays in microarchitectural features of skeletal aging.
Asunto(s)
Envejecimiento/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Osteoporosis/patología , Animales , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Análisis de Supervivencia , Telómero/patologíaRESUMEN
Bioinformatic approaches to the identification of genomic sequences having G-quadruplex forming potential (QFP) has enabled important tests of the structure of these sequences in vitro and of their behavior under conditions where the formation or function of G-quadruplexes is modulated in vivo. Several similar approaches to identifying intramolecular QFP (i.e. forming among G-runs on one strand of DNA) have been developed previously, but none appears to perfectly predict G-quadruplex formation. Here we describe a new approach, which complements and differs from prior approaches in that it identifies motifs containing G-runs on both strands of duplex DNA that could contribute to G-quadruplex structures. We call these motifs duplex-derived interstrand QFP (ddiQFP), and illustrate their potential applications by describing their genomic distribution and an example of their correspondence to loci targeted by a G-quadruplex-unwinding DNA helicase in yeast.
Asunto(s)
ADN Helicasas/química , ADN/química , G-Cuádruplex , Dicroismo Circular , Biología Computacional/métodos , Genómica , Guanina/química , Conformación de Ácido Nucleico , Telómero/químicaRESUMEN
Although mechanisms of telomere protection are well-defined in differentiated cells, it is poorly understood how stem cells sense and respond to telomere dysfunction. In particular, the broader impact of telomeric double-strand breaks (DSBs) in these cells is poorly characterized. Here, we report on DNA damage signaling, cell cycle, and transcriptome-level changes in human induced pluripotent stem cells (iPSCs) in response to telomere-internal DSBs. We engineered human iPSCs with an inducible TRF1-FokI fusion protein to acutely induce DSBs at telomeres. Using this model, we demonstrate that TRF1-FokI DSBs activate an ATR-dependent DDR, which leads to p53-independent cell cycle arrest in G2. Using CRISPR-Cas9 to cripple the catalytic domain of telomerase, we show that telomerase is largely dispensable for survival and lengthening of TRF1-FokI-cleaved telomeres, which instead are effectively repaired by robust homologous recombination (HR). In contrast to HR-based telomere maintenance in mouse embryonic stem cells, we find neither evidence that HR causes extension of telomeres beyond their initial lengths, nor an apparent role for ZSCAN4 in this process. Rather, HR-based repair of telomeric breaks is sufficient to maintain iPSC telomeres at a normal length which is compatible with sustained survival of the cells over several days of TRF1-FokI induction. Our findings suggest a previously unappreciated role for HR in telomere maintenance in telomerase-positive iPSCs and reveal distinct iPSC-specific responses to targeted telomeric damage.
RESUMEN
BACKGROUND & AIMS: Dyskeratosis congenita (DC) is a telomere biology disorder caused primarily by mutations in the DKC1 gene. Patients with DC and related telomeropathies resulting from premature telomere dysfunction experience multiorgan failure. In the liver, DC patients present with nodular hyperplasia, steatosis, inflammation, and cirrhosis. However, the mechanism responsible for telomere dysfunction-induced liver disease remains unclear. METHODS: We used isogenic human induced pluripotent stem cells (iPSCs) harboring a causal DC mutation in DKC1 or a CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9)-corrected control allele to model DC liver pathologies. We differentiated these iPSCs into hepatocytes (HEPs) or hepatic stellate cells (HSCs) followed by generation of genotype-admixed hepatostellate organoids. Single-cell transcriptomics were applied to hepatostellate organoids to understand cell type-specific genotype-phenotype relationships. RESULTS: Directed differentiation of iPSCs into HEPs and stellate cells and subsequent hepatostellate organoid formation revealed a dominant phenotype in the parenchyma, with DC HEPs becoming hyperplastic and also eliciting a pathogenic hyperplastic, proinflammatory response in stellate cells independent of stellate cell genotype. Pathogenic phenotypes in DKC1-mutant HEPs and hepatostellate organoids could be rescued via suppression of serine/threonine kinase AKT (protein kinase B) activity, a central regulator of MYC-driven hyperplasia downstream of DKC1 mutation. CONCLUSIONS: Isogenic iPSC-derived admixed hepatostellate organoids offer insight into the liver pathologies in telomeropathies and provide a framework for evaluating emerging therapies.
Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Hiperplasia/patología , Hígado/patología , Diferenciación Celular/genética , Organoides/patología , Proteínas Nucleares , Proteínas de Ciclo Celular/genéticaRESUMEN
The essential and evolutionarily conserved Smc5-Smc6 complex (Smc5/6) is critical for the maintenance of genome stability. Partial loss of Smc5/6 function yields several defects in DNA repair, which are rescued by inactivation of the homologous recombination (HR) machinery. Thus HR is thought to be toxic to cells with defective Smc5/6. Recent work has highlighted a role for Smc5/6 and the Sgs1 DNA helicase in preventing the accumulation of unresolved HR intermediates. Here we investigate how deletion of MPH1, encoding the orthologue of the human FANCM DNA helicase, rescues the DNA damage sensitivity of smc5/6 but not sgs1Δ mutants. We find that MPH1 deletion diminishes accumulation of HR intermediates within both smc5/6 and sgs1Δ cells, suggesting that MPH1 deletion is sufficient to decrease the use of template switch recombination (TSR) to bypass DNA lesions. We further explain how avoidance of TSR is nonetheless insufficient to rescue defects in sgs1Δ mutants, by demonstrating a requirement for Sgs1, along with the post-replicative repair (PRR) and HR machinery, in a pathway that operates in mph1Δ mutants. In addition, we map the region of Mph1 that binds Smc5, and describe a novel allele of MPH1 encoding a protein unable to bind Smc5 (mph1-Δ60). Remarkably, mph1-Δ60 supports normal growth and responses to DNA damaging agents, indicating that Smc5/6 does not simply restrain the recombinogenic activity of Mph1 via direct binding. These data as a whole highlight a role for Smc5/6 and Sgs1 in the resolution of Mph1-dependent HR intermediates.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/metabolismo , Complejos Multiproteicos/metabolismo , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Eliminación de Gen , Humanos , Complejos Multiproteicos/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
The human Werner and Bloom syndromes (WS and BS) are caused by deficiencies in the WRN and BLM RecQ helicases, respectively. WRN, BLM and their Saccharomyces cerevisiae homologue Sgs1, are particularly active in vitro in unwinding G-quadruplex DNA (G4-DNA), a family of non-canonical nucleic acid structures formed by certain G-rich sequences. Recently, mRNA levels from loci containing potential G-quadruplex-forming sequences (PQS) were found to be preferentially altered in sgs1Delta mutants, suggesting that G4-DNA targeting by Sgs1 directly affects gene expression. Here, we extend these findings to human cells. Using microarrays to measure mRNAs obtained from human fibroblasts deficient for various RecQ family helicases, we observe significant associations between loci that are upregulated in WS or BS cells and loci that have PQS. No such PQS associations were observed for control expression datasets, however. Furthermore, upregulated genes in WS and BS showed no or dramatically reduced associations with sequences similar to PQS but that have considerably reduced potential to form intramolecular G4-DNA. These findings indicate that, like Sgs1, WRN and BLM can regulate transcription globally by targeting G4-DNA.
Asunto(s)
Síndrome de Bloom/genética , ADN/química , G-Cuádruplex , Regulación de la Expresión Génica , RecQ Helicasas/deficiencia , Síndrome de Werner/genética , Secuencia de Bases , Síndrome de Bloom/metabolismo , Línea Celular , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Regulación hacia Arriba , Síndrome de Werner/metabolismoRESUMEN
Cellular senescence is a terminal cell fate characterized by growth arrest and a metabolically active state characterized by high glycolytic activity. Human fibroblasts were placed in a unique metabolic state using a combination of methionine restriction (MetR) and rapamycin (Rapa). This combination induced a metabolic reprogramming that prevented the glycolytic shift associated with senescence. Surprisingly, cells treated in this manner did not undergo senescence but continued to divide at a slow rate even at high passage, in contrast with either Rapa treatment or MetR, both of which extended life span but eventually resulted in growth arrest. Transcriptome-wide analysis revealed a coordinated regulation of metabolic enzymes related to one-carbon metabolism including three methyltransferase enzymes (KMT2D, SETD1B, and ASH1L), key enzymes for both carnitine synthesis and histone modification. These enzymes appear to be involved in both the metabolic phenotype of senescent cells and the chromatin changes required for establishing the senescence arrest. Targeting one of these enzymes, ASH1L, produced both a glycolytic shift and senescence, providing proof of concept. These findings reveal a mechanistic link between a major metabolic hallmark of senescence and nuclear events required for senescence.
Asunto(s)
Senescencia Celular , Epigénesis Genética , Senescencia Celular/genética , Fibroblastos/metabolismo , Glucólisis , Metionina/metabolismo , Sirolimus/farmacologíaRESUMEN
Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC-related pathologies.
Asunto(s)
Disqueratosis Congénita , Células Madre Pluripotentes Inducidas , Telomerasa , Células Epiteliales Alveolares/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Glucógeno Sintasa Quinasa 3 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismoRESUMEN
Telomeres are repetitive nucleoprotein structures that cap the ends of chromosomes. Without telomerase, telomeres shorten with replication and eventually signal cell cycle arrest (cell senescence). Homologous recombination (HR)-based mechanisms slow senescence, and distinct HR mechanisms support the growth of the rare survivors of senescence. Here, we report novel roles for the post-translational modification of small ubiquitin-like modifier (SUMO) in regulating the rate of senescence in Saccharomyces cerevisiae telomerase mutants. We identify Mms21 as the relevant SUMO E3 ligase and demonstrate that cells lacking Mms21-dependent sumoylation accumulate HR intermediates selectively at telomeres during senescence. One target of Mms21-dependent sumoylation is the cohesin- and condensin-related Smc5-Smc6 complex (Smc5/6). We show that hypomorphic smc5 or smc6 alleles exhibit phenotypes similar to mms21 sumoylation-deficient mutants with regard to senescence and the accumulation of unresolved HR intermediates. Further, we provide evidence that Mms21 and Smc5/6 prevent aberrant recombination between sister telomeres and also globally facilitate resolution of sister chromatid HR intermediates.