RESUMEN
The Hepatitis C Virus (HCV) NS3/4A is an attractive target for the treatment of Hepatitis C infection. Herein, we present an investigation of HCV NS3/4A inhibitors based on a sulfonamidobenzamide scaffold. Inhibitor interactions with HCV NS3/4A were explored by molecular docking, molecular dynamics simulations, and MM/PBSA binding free energy calculations. All of the inhibitors adopt similar molecular docking poses in the catalytic site of the protease that are stabilized by hydrogen bond interactions with G137 and the catalytic S139, which are known to be important for potency and binding stability. The quantitative assessments of binding free energies from MM/PBSA correlate well with the experimental results, with a high coefficient of determination, R2 of 0.92. Binding free energy decomposition analyses elucidate the different contributions of Q41, F43, H57, R109, K136, G137, S138, S139, A156, M485, and Q526 in binding different inhibitors. The importance of these sidechain contributions was further confirmed by computational alanine scanning mutagenesis. In addition, the sidechains of K136 and S139 show crucial but distinct contributions to inhibitor binding with HCV NS3/4A. The structural basis of the potency has been elucidated, demonstrating the importance of the R155 sidechain conformation. This extensive exploration of binding energies and interactions between these compounds and HCV NS3/4A at the atomic level should benefit future antiviral drug design.
Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/química , Hepatitis C/tratamiento farmacológico , Antivirales/farmacología , Antivirales/químicaRESUMEN
Drug-resistant Staphylococcus aureus is an imminent threat to public health, increasing the importance of drug discovery utilizing unexplored bacterial pathways and enzyme targets. De novo pyrimidine biosynthesis is a specialized, highly conserved pathway implicated in both the survival and virulence of several clinically relevant pathogens. Class I dihydroorotase (DHOase) is a separate and distinct enzyme present in gram positive bacteria (i.e., S. aureus, B. anthracis) that converts carbamoyl-aspartate (Ca-asp) to dihydroorotate (DHO)-an integral step in the de novo pyrimidine biosynthesis pathway. This study sets forth a high-throughput screening (HTS) of 3000 fragment compounds by a colorimetry-based enzymatic assay as a primary screen, identifying small molecule inhibitors of S. aureus DHOase (SaDHOase), followed by hit validation with a direct binding analysis using surface plasmon resonance (SPR). Competition SPR studies of six hit compounds and eight additional analogs with the substrate Ca-asp determined the best compound to be a competitive inhibitor with a KD value of 11 µM, which is 10-fold tighter than Ca-asp. Preliminary structure-activity relationship (SAR) provides the foundation for further structure-based antimicrobial inhibitor design against S. aureus.
Asunto(s)
Dihidroorotasa/antagonistas & inhibidores , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Staphylococcus aureus/enzimología , Dominio Catalítico , Dihidroorotasa/química , Dihidroorotasa/aislamiento & purificación , Dihidroorotasa/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/química , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Recent crystallography studies have shown that the binding site oxyanion hole plays an important role in inhibitor binding, but can exist in two conformations (active/inactive). We have undertaken molecular dynamics (MD) calculations to better understand oxyanion hole dynamics and thermodynamics. We find that the Zika virus (ZIKV) NS2B/NS3 protease maintains a stable closed conformation over multiple 100-ns conventional MD simulations in both the presence and absence of inhibitors. The S1, S2, and S3 pockets are stable as well. However, in two of eight simulations, the A132-G133 peptide bond in the binding pocket of S1' spontaneously flips to form a 310 -helix that corresponds to the inactive conformation of the oxyanion hole, and then maintains this conformation until the end of the 100-ns conventional MD simulations without inversion of the flip. This conformational change affects the S1' pocket in ZIKV NS2B/NS3 protease active site, which is important for small molecule binding. The simulation results provide evidence at the atomic level that the inactive conformation of the oxyanion hole is more favored energetically when no specific interactions are formed between substrate/inhibitor and oxyanion hole residues. Interestingly, however, transition between the active and inactive conformation of the oxyanion hole can be observed by boosting the valley potential in accelerated MD simulations. This supports a proposed induced-fit mechanism of ZIKV NS2B/NS3 protease from computational methods and provides useful direction to enhance inhibitor binding predictions in structure-based drug design.
Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/química , Proteínas Virales/química , Virus Zika/metabolismo , Algoritmos , Aniones/química , Aniones/metabolismo , Cristalografía por Rayos X , Estructura Molecular , Oxígeno/química , Oxígeno/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Unión Proteica , Serina Endopeptidasas/metabolismo , Termodinámica , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Virus Zika/fisiología , Infección por el Virus Zika/virologíaRESUMEN
A new non-cytotoxic [(+)-17ß-hydroxystrebloside (1)] and two known cytotoxic [(+)-3'-de-O-methylkamaloside (2) and (+)-strebloside (3)] cardiac glycosides were isolated and identified from the combined flowers, leaves, and twigs of Streblus asper collected in Vietnam, with the absolute configuration of 1 established from analysis of its ECD and NMR spectroscopic data and confirmed by computational ECD calculations. A new 14,21-epoxycardanolide (3a) was synthesized from 3 that was treated with base. A preliminary structure-activity relationship study indicated that the C-14 hydroxy group and the C-17 lactone unit and the established conformation are important for the mediation of the cytotoxicity of 3. Molecular docking profiles showed that the cytotoxic 3 and its non-cytotoxic analogue 1 bind differentially to Na+/K+-ATPase. Compound 3 docks deeply in the Na+/K+-ATPase pocket with a sole pose, and its C-10 formyl and C-5, C-14, and C-4' hydroxy groups may form hydrogen bonds with the side-chains of Glu111, Glu117, Thr797, and Arg880 of Na+/K+-ATPase, respectively. However, 1 fits the cation binding sites with at least three different poses, which all depotentiate the binding between 1 and Na+/K+-ATPase. Thus, 3 was found to inhibit Na+/K+-ATPase, but 1 did not. In addition, the cytotoxic and Na+/K+-ATPase inhibitory 3 did not affect glucose uptake in human lung cancer cells, against which it showed potent activity, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Glicósidos Cardíacos/farmacología , Inhibidores Enzimáticos/farmacología , Moraceae/química , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Glicósidos Cardíacos/química , Glicósidos Cardíacos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Flores/química , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Hojas de la Planta/química , Tallos de la Planta/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Relación Estructura-ActividadRESUMEN
(+)-Digoxin (1) is a well-known cardiac glycoside long used to treat congestive heart failure and found more recently to show anticancer activity. Several known cardenolides (2-5) and two new analogues, (+)-8(9)-ß-anhydrodigoxigenin (6) and (+)-17-epi-20,22-dihydro-21α-hydroxydigoxin (7), were synthesized from 1 and evaluated for their cytotoxicity toward a small panel of human cancer cell lines. A preliminary structure-activity relationship investigation conducted indicated that the C-12 and C-14 hydroxy groups and the C-17 unsaturated lactone unit are important for 1 to mediate its cytotoxicity toward human cancer cells, but the C-3 glycosyl residue seems to be less critical for such an effect. Molecular docking profiles showed that the cytotoxic 1 and the noncytotoxic derivative 7 bind differentially to Na+/K+-ATPase. The HO-12ß, HO-14ß, and HO-3'aα hydroxy groups of (+)-digoxin (1) may form hydrogen bonds with the side-chains of Asp121 and Asn122, Thr797, and Arg880 of Na+/K+-ATPase, respectively, but the altered lactone unit of 7 results in a rotation of its steroid core, which depotentiates the binding between this compound and Na+/K+-ATPase. Thus, 1 was found to inhibit Na+/K+-ATPase, but 7 did not. In addition, the cytotoxic 1 did not affect glucose uptake in human cancer cells, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters.
Asunto(s)
Antineoplásicos/farmacología , Cardenólidos/farmacología , Digoxina/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Cardenólidos/síntesis química , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Methicillin-resistant Staphylococcus aureus (MRSA) strains that are resistant to all forms of penicillin have become an increasingly common and urgent problem threatening human health. They are responsible for a wide variety of infectious diseases ranging from minor skin abscesses to life-threatening severe infections. The vra operon that is conserved among S. aureus strains encodes a three-component signal transduction system (vraTSR) that is responsible for sensing and responding to cell wall stress. We developed a novel and multifaceted assay to identify compounds that potentiate the activity of oxacillin, essentially restoring efficacy of oxacillin against MRSA, and performed high-throughput screening (HTS) to identify oxacillin potentiators. HTS of 13,840 small-molecule compounds from an antimicrobial-focused Life Chemicals library, using the MRSA cell-based assay, identified three different inhibitor scaffolds. Checkerboard assays for synergy with oxacillin, reverse transcriptase PCR (RT-PCR) assays against vraR expression, and direct confirmation of interaction with VraS by surface plasmon resonance (SPR) further verified them to be viable hit compounds. A subsequent structure-activity relationship (SAR) study of the best scaffold with diverse analogs was utilized to improve potency and provides a strong foundation for further development.
Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oxacilina/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Relación Estructura-ActividadRESUMEN
Among the many Hepatitis C virus (HCV) genotypes and subtypes, genotypes 1b and 3a are most prevalent in United States and Asia, respectively. A total of 132 commercially available analogs of a previous lead compound were initially investigated against wild-type HCV genotype 1b NS3/4A protease. Ten compounds showed inhibitory activities (IC50 values) below 10⯵M with comparable direct binding affinities (KD values) determined by surface plasmon resonance (SPR). To identify pan-genotypic inhibitors, these ten selected compounds were tested against four additional genotypes (1a, 2a, 3a, and 4) and three drug-resistant mutants (A156S, R155K, and V36M). Four new analogs have been identified with better activities against all five tested genotypes than the prior lead compound. Further, the original lead compound did not show activity against genotype 3a NS3/4A, whereas four newly identified compounds exhibited IC50 values below 33⯵M against genotype 3a NS3/4A. Encouragingly, the best new compound F1813-0710 possessed promising activity toward genotype 3a, which is a huge improvement over the previous lead compound that had no effect on genotype 3a. This intriguing observation was further analyzed by molecular docking and molecular dynamics (MD) simulations to understand their different binding interactions, which should benefit future pan-genotypic inhibitor design and drug discovery.
Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Genotipo , Hepacivirus/enzimología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Serina Proteasas/genética , Serina Proteasas/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
The development of new therapeutic agents against the coronavirus causing Middle East Respiratory Syndrome (MERS) is a continuing imperative. The initial MERS-CoV epidemic was contained entirely through public health measures, but episodic cases continue, as there are currently no therapeutic agents effective in the treatment of MERS-CoV, although multiple strategies have been proposed. In this study, we screened 30,000 compounds from three different compound libraries against one of the essential proteases, the papain-like protease (PLpro), using a fluorescence-based enzymatic assay followed by surface plasmon resonance (SPR) direct binding analysis for hit confirmation. Mode of inhibition assays and competition SPR studies revealed two compounds to be competitive inhibitors. To improve upon the inhibitory activity of the best hit compounds, a small fragment library consisting of 352 fragments was screened in the presence of each hit compound, resulting in one fragment that enhanced the IC50 value of the best hit compound by 3-fold. Molecular docking and MM/PBSA binding energy calculations were used to predict potential binding sites, providing insight for design and synthesis of next-generation compounds.
Asunto(s)
Diseño de Fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Péptido Hidrolasas/química , Inhibidores de Proteasas/química , Bibliotecas de Moléculas Pequeñas/química , Proteínas Virales/antagonistas & inhibidores , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Ensayos Analíticos de Alto Rendimiento , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Estructura Terciaria de Proteína , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad , Proteínas Virales/metabolismoRESUMEN
The binding of the adenovirus (Ad) protein E3-19K with the human leukocyte antigen (HLA) plays an important role in Ad infections, which is the causative agent of a series of gastrointestinal, respiratory and ocular diseases. The objective of this research is to evaluate the essential interactions between E3-19K and HLA-A2 using the X-ray crystal structure of the E3-19K/HLA-A2 complex, and to identify small molecules that could potentially disrupt their binding. Computational methods, including molecular dynamic simulations, MM/GBSA calculations, and computational solvent mapping, were implemented to determine potential binding site(s) for small molecules. The previous experimentally determined hot spot residues, Q54 and E177 in HLA-A2, were also predicted to be the dominant residues for binding to E3-19K by our theoretical calculations. Several other residues were also found to play pivotal roles for the binding of E3-19K with HLA-A2. Residues adjacent to E177, including Q54 and several other residues theoretically predicted to be crucial in HLA-A2 were selected as a potential binding pocket to perform virtual screening with 1200 compounds from the Prestwick library. Seven hits were validated by surface plasmon resonance (SPR) as binders to HLA-A2 as a first step in identifying molecules that can perturb its association with the Ad E3-19K protein.
Asunto(s)
Adenoviridae/efectos de los fármacos , Proteínas E3 de Adenovirus/antagonistas & inhibidores , Antivirales/farmacología , Descubrimiento de Drogas , Antígeno HLA-A2/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Adenoviridae/metabolismo , Proteínas E3 de Adenovirus/química , Proteínas E3 de Adenovirus/metabolismo , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Antígeno HLA-A2/química , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-ActividadRESUMEN
We have previously reported benzimidazole-based compounds to be potent inhibitors of FabI for Francisella tularensis (FtFabI), making them promising antimicrobial hits. Optically active enantiomers exhibit markedly differing affinities toward FtFabI. The IC50 of benzimidazole (-)-1 is â¼100× lower than the (+)-enantiomer, with similar results for the 2 enantiomers. Determining the absolute configuration for these optical compounds and elucidating their binding modes is important for further design. Electronic circular dichroism (ECD) quantum calculations have become important in determining absolute configurations of optical compounds. We determined the absolute configuration of (-)/(+)-1 and (-)/(+)-2 by comparing experimental spectra and theoretical density functional theory (DFT) simulations of ECD spectra at the B3LYP/6-311+G(2d, p) level using Gaussian09. Comparison of experimental and calculated ECD spectra indicates that the S configuration corresponds to the (-)-rotation for both compounds 1 and 2, while the R configuration corresponds to the (+)-rotation. Further, molecular dynamics simulations and MM-GBSA binding energy calculations for these two pairs of enantiomers with FtFabI show much tighter binding MM-GBSA free energies for S-1 and S-2 than for their enantiomers, R-1 and R-2, consistent with the S configuration being the more active one, and with the ECD determination of the S configuration corresponding to (-) and the R configuration corresponding to (+). Thus, our computational studies allow us to assign (-) to (S)- and (+) to (R)- for compounds 1 and 2, and to further evaluate structural changes to improve efficacy.
Asunto(s)
Antibacterianos/farmacología , Bencimidazoles/farmacología , Enoil-CoA Hidratasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Francisella tularensis/efectos de los fármacos , Teoría Cuántica , Antibacterianos/química , Bencimidazoles/química , Sitios de Unión/efectos de los fármacos , Dicroismo Circular , Relación Dosis-Respuesta a Droga , Enoil-CoA Hidratasa/metabolismo , Inhibidores Enzimáticos/química , Francisella tularensis/enzimología , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-ActividadRESUMEN
S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain.
Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Enoil-ACP Reductasa (NADH)/metabolismo , Escherichia coli/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-ActividadRESUMEN
(+)-Strebloside, a cardiac glycoside isolated from the stem bark of Streblus asper collected in Vietnam, has shown some potential for further investigation as an antineoplastic agent. A mechanistic study using an in vitro assay and molecular docking analysis indicated that (+)-strebloside binds and inhibits Na+/K+-ATPase in a similar manner to digitoxin. Inhibition of growth of different high-grade serous ovarian cancer cells including OVCAR3, OVSAHO, Kuramochi, OVCAR4, OVCAR5, and OVCAR8 resulted from treatment with (+)-strebloside. Furthermore, this compound blocked cell cycle progression at the G2 phase and induced PARP cleavage, indicating apoptosis activation in OVCAR3 cells. (+)-Strebloside potently inhibited mutant p53 expression through the induction of ERK pathways and inhibited NF-κB activity in human ovarian cancer cells. However, in spite of its antitumor potential, the overall biological activity of (+)-strebloside must be regarded as being typical of better-known cardiac glycosides such as digoxin and ouabain. Further chemical alteration of cardiac glycosides might help to reduce negative side effects while increasing cancer cell cytotoxicity.
Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Glicósidos Cardíacos/aislamiento & purificación , Glicósidos Cardíacos/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario , Glicósidos Cardíacos/química , Digoxina/farmacología , Femenino , Células HT29 , Humanos , Estructura Molecular , FN-kappa B/metabolismo , Neoplasias Glandulares y Epiteliales , Ouabaína/farmacología , Neoplasias Ováricas , Transducción de Señal/efectos de los fármacos , EstereoisomerismoRESUMEN
Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the parahalogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme.
Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Enoil-CoA Hidratasa/antagonistas & inhibidores , Enoil-CoA Hidratasa/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Halógenos/química , Simulación de Dinámica Molecular , Enoil-CoA Hidratasa/metabolismo , Francisella tularensis/enzimología , Estructura Molecular , TermodinámicaRESUMEN
Quorum sensing (QS) has been recognized as an important biological phenomenon in which bacterial cells communicate and coordinate their gene expression and cellular processes with respect to population density. Bacillus anthracis is the etiological agent of fatal pulmonary anthrax infections, and the NprR/NprX QS system may be involved in its pathogenesis. NprR, renamed as aqsR for anthrax quorum sensing Regulator, is a transcriptional regulator that may control the expression of genes required for proliferation and survival. Currently, there is no protocol reported to over-express and purify B. anthracis AqsR. In this study, we describe cloning, purification, and confirmation of functional full-length B. anthracis AqsR protein. The AqsR gene was cloned into the pQE-30 vector with an HRV 3C protease recognition site between AqsR and the N-terminal His6-tag in order to yield near native AqsR after the His-tag cleavage, leaving only two additional amino acid residues at the N-terminus.
Asunto(s)
Bacillus anthracis/metabolismo , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción , Bacillus anthracis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Línea Celular , Expresión Génica , Humanos , Percepción de Quorum , Resonancia por Plasmón de Superficie , Espectrometría de Masas en Tándem , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismoRESUMEN
Dihydroorotase (DHOase) is the third enzyme in the de novo pyrimidine synthesis pathway and is responsible for the reversible cyclization of carbamyl-aspartate (Ca-asp) to dihydroorotate (DHO). DHOase is further divided into two classes based on several structural characteristics, one of which is the length of the flexible catalytic loop that interacts with the substrate, Ca-asp, regulating the enzyme activity. Here, we present the crystal structure of Class I Bacillus anthracis DHOase with Ca-asp in the active site, which shows the peptide backbone of glycine in the shorter loop forming the necessary hydrogen bonds with the substrate, in place of the two threonines found in Class II DHOases. Despite the differences in the catalytic loop, the structure confirms that the key interactions between the substrate and active site residues are similar between Class I and Class II DHOase enzymes, which we further validated by mutagenesis studies. B. anthracis DHOase is also a potential antibacterial drug target. In order to identify prospective inhibitors, we performed high-throughput screening against several libraries using a colorimetric enzymatic assay and an orthogonal fluorescence thermal binding assay. Surface plasmon resonance was used for determining binding affinity (KD) and competition analysis with Ca-asp. Our results highlight that the primary difference between Class I and Class II DHOase is the catalytic loop. We also identify several compounds that can potentially be further optimized as potential B. anthracis inhibitors.
Asunto(s)
Bacillus anthracis/enzimología , Dihidroorotasa/antagonistas & inhibidores , Dihidroorotasa/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Carbunco/tratamiento farmacológico , Antibacterianos/química , Antibacterianos/farmacología , Bacillus anthracis/química , Bacillus anthracis/metabolismo , Cristalografía por Rayos X , Dihidroorotasa/metabolismo , Humanos , Modelos Moleculares , Conformación ProteicaRESUMEN
The de novo purine biosynthesis pathway is an attractive target for antibacterial drug design, and PurE from this pathway has been identified to be crucial for Bacillus anthracis survival in serum. In this study we adopted a fragment-based hit discovery approach, using three screening methods-saturation transfer difference nucleus magnetic resonance (STD-NMR), water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR, and surface plasmon resonance (SPR), against B. anthracis PurE (BaPurE) to identify active site binding fragments by initially testing 352 compounds in a Zenobia fragment library. Competition STD NMR with the BaPurE product effectively eliminated non-active site binding hits from the primary hits, selecting active site binders only. Binding affinities (dissociation constant, KD) of these compounds varied between 234 and 301µM. Based on test results from the Zenobia compounds, we subsequently developed and applied a streamlined fragment screening strategy to screen a much larger library consisting of 3000 computationally pre-selected fragments. Thirteen final fragment hits were confirmed to exhibit binding affinities varying from 14µM to 700µM, which were categorized into five different basic scaffolds. All thirteen fragment hits have ligand efficiencies higher than 0.30. We demonstrated that at least two fragments from two different scaffolds exhibit inhibitory activity against the BaPurE enzyme.
Asunto(s)
Bacillus anthracis/enzimología , Inhibidores Enzimáticos/farmacología , Transferasas Intramoleculares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Transferasas Intramoleculares/aislamiento & purificación , Transferasas Intramoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Resonancia por Plasmón de SuperficieRESUMEN
To validate a method for predicting the binding affinities of FabI inhibitors, three implicit solvent methods, MM-PBSA, MM-GBSA, and QM/MM-GBSA were carefully compared using 16 benzimidazole inhibitors in complex with Francisella tularensis FabI. The data suggests that the prediction results are sensitive to radii sets, GB methods, QM Hamiltonians, sampling protocols, and simulation length, if only one simulation trajectory is used for each ligand. In this case, QM/MM-GBSA using 6 ns MD simulation trajectories together with GB(neck2) , PM3, and the mbondi2 radii set, generate the closest agreement with experimental values (r(2) = 0.88). However, if the three implicit solvent methods are averaged from six 1 ns MD simulations for each ligand (called "multiple independent sampling"), the prediction results are relatively insensitive to all the tested parameters. Moreover, MM/GBSA together with GB(HCT) and mbondi, using 600 frames extracted evenly from six 0.25 ns MD simulations, can also provide accurate prediction to experimental values (r(2) = 0.84). Therefore, the multiple independent sampling method can be more efficient than a single, long simulation method. Since future scaffold expansions may significantly change the benzimidazole's physiochemical properties (charges, etc.) and possibly binding modes, which may affect the sensitivities of various parameters, the relatively insensitive "multiple independent sampling method" may avoid the need of an entirely new validation study. Moreover, due to large fluctuating entropy values, (QM/)MM-P(G)BSA were limited to inhibitors' relative affinity prediction, but not the absolute affinity. The developed protocol will support an ongoing benzimidazole lead optimization program.
Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Francisella tularensis/enzimología , Diseño de Fármacos , Enoil-ACP Reductasa (NADH)/metabolismo , Entropía , Francisella tularensis/química , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Tularemia/tratamiento farmacológico , Tularemia/microbiologíaRESUMEN
Francisella tularensis, the causative agent of tularemia, presents a significant biological threat and is a Category A priority pathogen due to its potential for weaponization. The bacterial FASII pathway is a viable target for the development of novel antibacterial agents treating Gram-negative infections. Here we report the advancement of a promising series of benzimidazole FabI (enoyl-ACP reductase) inhibitors to a second-generation using a systematic, structure-guided lead optimization strategy, and the determination of several co-crystal structures that confirm the binding mode of designed inhibitors. These compounds display an improved low nanomolar enzymatic activity as well as promising low microgram/mL antibacterial activity against both F. tularensis and Staphylococcus aureus and its methicillin-resistant strain (MRSA). The improvements in activity accompanying structural modifications lead to a better understanding of the relationship between the chemical structure and biological activity that encompasses both enzymatic and whole-cell activity.
Asunto(s)
Antibacterianos/química , Bencimidazoles/química , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Francisella tularensis/enzimología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Enoil-ACP Reductasa (NADH)/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Francisella tularensis/efectos de los fármacos , Cinética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
N(5)-carboxy-amino-imidazole ribonucleotide (N(5)-CAIR) mutase (PurE), a bacterial enzyme in the de novo purine biosynthetic pathway, has been suggested to be a target for antimicrobial agent development. We have optimized a thermal shift method for high-throughput screening of compounds binding to Bacillus anthracis PurE. We used a low ionic strength buffer condition to accentuate the thermal shift stabilization induced by compound binding to Bacillus anthracis PurE. The compounds identified were then subjected to computational docking to the active site to further select compounds likely to be inhibitors. A UV-based enzymatic activity assay was then used to select inhibitory compounds. Minimum inhibitory concentration (MIC) values were subsequently obtained for the inhibitory compounds against Bacillus anthracis (ΔANR strain), Escherichia coli (BW25113 strain, wild-type and ΔTolC), Francisella tularensis, Staphylococcus aureus (both methicillin susceptible and methicillin-resistant strains) and Yersinia pestis. Several compounds exhibited excellent (0.05-0.15µg/mL) MIC values against Bacillus anthracis. A common core structure was identified for the compounds exhibiting low MIC values. The difference in concentrations for inhibition and MIC suggest that another enzyme(s) is also targeted by the compounds that we identified.
Asunto(s)
Antiinfecciosos/farmacología , Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/enzimología , Inhibidores Enzimáticos/farmacología , Antiinfecciosos/química , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Estructura Terciaria de ProteínaRESUMEN
Streptococcus pneumoniae is a multidrug-resistant pathogen that is a target of considerable interest for antibacterial drug development. One strategy for drug discovery is to inhibit an essential metabolic enzyme. The seventh step of the de novo purine-biosynthesis pathway converts carboxyaminoimidazoleribonucleotide (CAIR) and L-aspartic acid (Asp) to 4-(N-succino)-5-aminoimidazole-4-carboxamide ribonucleotide (SAICAR) in the presence of adenosine 5'-triphosphate (ATP) using the enzyme PurC. PurC has been shown to be conditionally essential for bacterial replication. Two crystal structures of this essential enzyme from Streptococcus pneumoniae (spPurC) in the presence of adenosine 5'-diphosphate (ADP), Mg(2+), aminoimidazoleribonucleotide (AIR) and/or Asp have been obtained. This is the first structural study of spPurC, as well as the first of PurC from any species with Asp in the active site. Based on these findings, two model structures are proposed for the active site with all of the essential ligands (ATP, Mg(2+), Asp and CAIR) present, and a relay mechanism for the formation of the product SAICAR is suggested.