Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(1): 1-21, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37830742

RESUMEN

The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.


Asunto(s)
Cyprinidae , Microbioma Gastrointestinal , Peces Killi , Microbiota , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Peces Killi/genética , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , ARN Ribosómico 16S , Hidrocarburos , Golfo de México , Contaminantes Químicos del Agua/toxicidad
2.
Nucleic Acids Res ; 45(D1): D566-D573, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27789705

RESUMEN

The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca) is a manually curated resource containing high quality reference data on the molecular basis of antimicrobial resistance (AMR), with an emphasis on the genes, proteins and mutations involved in AMR. CARD is ontologically structured, model centric, and spans the breadth of AMR drug classes and resistance mechanisms, including intrinsic, mutation-driven and acquired resistance. It is built upon the Antibiotic Resistance Ontology (ARO), a custom built, interconnected and hierarchical controlled vocabulary allowing advanced data sharing and organization. Its design allows the development of novel genome analysis tools, such as the Resistance Gene Identifier (RGI) for resistome prediction from raw genome sequence. Recent improvements include extensive curation of additional reference sequences and mutations, development of a unique Model Ontology and accompanying AMR detection models to power sequence analysis, new visualization tools, and expansion of the RGI for detection of emergent AMR threats. CARD curation is updated monthly based on an interplay of manual literature curation, computational text mining, and genome analysis.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Farmacorresistencia Microbiana , Microbiología , Ontologías Biológicas , Curaduría de Datos , Navegador Web
3.
Environ Sci Technol ; 51(13): 7386-7394, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28578575

RESUMEN

Mercury (Hg) concentration trends in top predator fish (lake trout and walleye) of the Great Lakes (GL) from 2004 to 2015 were determined by Kendall-Theil robust regression with a cluster-based age normalization method to control for the effect of changes in lake trophic status. When data from the GLs (except Lake Erie) are combined, a significant decreasing trend in the lake trout Hg concentrations was found between 2004 and 2015 with an annual decrease of 4.1% per year, consistent with the decline in regional atmospheric Hg emissions and water Hg concentrations. However, a breakpoint was detected with a significant decreasing slope (-8.1% per year) before the breakpoint (2010), and no trend after the breakpoint. When the lakes are examined individually, Lakes Superior and Huron, which are dominated by atmospheric Hg inputs and are more likely than the lower lakes to respond to declining emissions from areas surrounding the GL, have significant decreasing trends with rates between 5.2 and 7.8% per year from 2004 to 2015. These declining trends appear to be driven by decreasing regional atmospheric Hg emissions although they may be partly counterbalanced by other factors, including increasing local emissions, food web changes, eutrophication, and responses to global climate change. Lakes Michigan, Erie and Ontario may have been more impacted by these other factors and their trends changed from decreasing to non-decreasing or increasing in recent years.


Asunto(s)
Peces , Cadena Alimentaria , Mercurio , Contaminantes Químicos del Agua , Animales , Cambio Climático , Monitoreo del Ambiente , Great Lakes Region , Lagos , Michigan , Ontario
4.
Environ Sci Technol ; 50(21): 11912-11921, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27740769

RESUMEN

Germicidal UVC radiation is a highly effective, chemical-free tool for bacteria inactivation, but its application is limited to reactors and open areas that can accommodate lamps/LEDs and wiring. A relevant example of problematic bacterial colonization within UV-inaccessible confines where chemical techniques have found only limited success is biofouling of feed channels in high-pressure membrane elements for water treatment. Herein we demonstrate a unique method of generating UV internally using embedded radioluminescent (RL) particles excited by an external X-ray source. We further show that the magnitude of the emitted UV intensity and required X-ray dose rates are likely within effective and practical ranges for future application to antibiofouling technology. Assessment of three Pr3+-activated RL phosphor candidates revealed LaPO4:Pr3+ to have the most favorable luminescence properties, achieving over 2-log inactivation of E. coli in a thin water film with a 74 Gy dose of 150 kVp X-rays. The effect of UVC RL resulted in a doubling of inactivation rates over X-ray irradiation alone. Further efforts targeting membrane applications, which included X-ray penetration modeling, RO membrane UVC tolerance, and economic analysis, suggested that UVC RL shows promise for application to bacteria control in seawater RO.


Asunto(s)
Técnicas Bacteriológicas/métodos , Incrustaciones Biológicas , Escherichia coli , Escherichia coli/efectos de la radiación , Rayos Ultravioleta , Rayos X
5.
Proc Natl Acad Sci U S A ; 110(9): 3435-40, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401528

RESUMEN

Antibiotic resistance genes (ARGs) are emerging contaminants posing a potential worldwide human health risk. Intensive animal husbandry is believed to be a major contributor to the increased environmental burden of ARGs. Despite the volume of antibiotics used in China, little information is available regarding the corresponding ARGs associated with animal farms. We assessed type and concentrations of ARGs at three stages of manure processing to land disposal at three large-scale (10,000 animals per year) commercial swine farms in China. In-feed or therapeutic antibiotics used on these farms include all major classes of antibiotics except vancomycins. High-capacity quantitative PCR arrays detected 149 unique resistance genes among all of the farm samples, the top 63 ARGs being enriched 192-fold (median) up to 28,000-fold (maximum) compared with their respective antibiotic-free manure or soil controls. Antibiotics and heavy metals used as feed supplements were elevated in the manures, suggesting the potential for coselection of resistance traits. The potential for horizontal transfer of ARGs because of transposon-specific ARGs is implicated by the enrichment of transposases--the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure--as well as the high correlation (r(2) = 0.96) between ARG and transposase abundance. In addition, abundance of ARGs correlated directly with antibiotic and metal concentrations, indicating their importance in selection of resistance genes. Diverse, abundant, and potentially mobile ARGs in farm samples suggest that unmonitored use of antibiotics and metals is causing the emergence and release of ARGs to the environment.


Asunto(s)
Crianza de Animales Domésticos , Farmacorresistencia Microbiana/genética , Genes Bacterianos/genética , Variación Genética , Porcinos/crecimiento & desarrollo , Animales , Antibacterianos/análisis , Antibacterianos/farmacología , China , Farmacorresistencia Microbiana/efectos de los fármacos , Humanos , Metales Pesados/análisis , Transposasas/genética
6.
Proc Natl Acad Sci U S A ; 109(5): 1691-6, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307632

RESUMEN

Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1-11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses.


Asunto(s)
Alimentación Animal , Antibacterianos/farmacología , Intestinos/microbiología , Metagenoma , Animales , Antibacterianos/administración & dosificación , Farmacorresistencia Microbiana , Reacción en Cadena de la Polimerasa , Porcinos
7.
Microbiol Spectr ; 12(6): e0408423, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38717193

RESUMEN

Researchers have extensively studied the effect of oxygen on the growth and survival of bacteria. However, the impact of oxygen on bacterial community structure, particularly its ability to select for taxa within the context of a complex microbial community, is still unclear. In a 21-day microcosm experiment, we investigated the effect of aerobic exposure on the fecal community structure and succession pattern in broiler, calf, and piglet feces (n = 10 for each feces type). Bacterial diversity decreased and community structure changed rapidly in the broiler microbiome (P < 0.001), while the fecal community of calves and piglets, which have higher initial diversity, was stable after initial exposure but decreased in diversity after 3 days (P < 0.001). The response to aerobic exposure was host animal specific, but in all three animals, the change in community structure was driven by a decrease in anaerobic species, primarily belonging to Firmicutes and Bacteroidetes (except in broilers where Bacteroidetes increased), along with an increase in aerobic species belonging to Proteobacteria and Actinobacteria. Using random forest regression, we identified microbial features that predict aerobic exposure. In all three animals, host-beneficial Prevotella-related ASVs decreased after exposure, while ASVs belonging to Acinetobacter, Corynbacterium, and Tissierella were increased. The decrease of Prevotella was rapid in broilers but delayed in calves and piglets. Knowing when these pathobionts increase in abundance after aerobic exposure could inform farm sanitation practices and could be important in designing animal experiments that modulate the microbiome.IMPORTANCEThe fecal microbial community is contained within a dynamic ecosystem of interacting microbes that varies in biotic and abiotic components across different animal species. Although oxygen affects bacterial growth, its specific impact on the structure of complex communities, such as those found in feces, and how these effects vary between different animal species are poorly understood. In this study, we demonstrate that the effect of aerobic exposure on the fecal microbiota was host-animal-specific, primarily driven by a decrease in Firmicutes and Bacteroidetes, but accompanied by an increase in Actinobacteria, Proteobacteria, and other pathobionts. Interestingly, we observed that more complex communities from pig and cattle exhibited initial resilience, while a less diverse community from broilers displayed a rapid response to aerobic exposure. Our findings offer insights that can inform farm sanitation practices, as well as experimental design, sample collection, and processing protocols for microbiome studies across various animal species.


Asunto(s)
Bacterias , Pollos , Heces , Microbioma Gastrointestinal , Animales , Heces/microbiología , Pollos/microbiología , Porcinos/microbiología , Bovinos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Aerobiosis , ARN Ribosómico 16S/genética , Bacteroidetes/genética , Bacteroidetes/clasificación , Bacteroidetes/aislamiento & purificación , Microbiota
8.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38206189

RESUMEN

Recent studies have highlighted the importance of maternal nutrition during gestation and lactation in modulating the gastrointestinal development and health of offspring. Therefore, the objective of this study was to determine the effects of live yeast (LY) supplementation to sows during late gestation and throughout lactation on markers of gut health of piglets prior to weaning and immediately postweaning. On day 77 of gestation, forty sows were allotted based on parity and expected farrowing dates to two dietary treatments: without (CON) or with (LY) supplementation at 0.05% and 0.1% of diet during gestation and lactation, respectively. On postnatal days (PND) 0, 10, 18, and postweaning days (PWD) 7 and 14, one piglet from each of 10 sows per treatment were selected for intestinal tissue collection (n = 10). Real-time PCR and western blotting analyses were used to determine the mucosal expression of immune and antioxidant-regulatory genes and tight junction markers of gut health in the duodenum, jejunum, and ileum. Inflammatory and tight junction markers on PND 0 were not affected by maternal dietary treatment. On PND 18, maternal LY supplementation increased (P < 0.05) mRNA expression of interleukin (IL)-6 and tended (P = 0.08) to increase expression of IL-10 in the ileal muocsa. Maternal LY supplementation also increased (P < 0.05) expression of IL-1ß in the ileal mucosa on PWD 14. Likewise, expression of superoxide dismutase (SOD) 1 was increased (P < 0.05) by LY on PND 10, 18, and PWD 14, with a tendency (P = 0.09) for a greater mRNA abundance of catalase on PND 14 in the ileal mucosa. Compared to CON piglets, LY piglets had a higher (P < 0.05) protein abundance of E-cadherin in the jejunal mucosa on PND 0, PWD 7, and PWD 14. Levels of occludin and claudin-4 were also higher (P < 0.05) in the jejunum of LY piglets on PWD 14. No differences were found in jejunal histomorphological measurements between treatments. In conclusion, this study shows that maternal LY supplementation affects key markers of gut health and development in the offspring that may impact the future growth potential and health of newborn piglets.


Increasing evidence supports the benefits of improving sow nutrition during gestation and lactation to promote gastrointestinal development and overall health of piglets. The objective of this research was to investigate the effects of maternal live yeast (LY) supplementation to sows during late gestation and lactation periods on the intestinal health of suckling and weaned piglets. Sows were fed LY during gestation and lactation and piglets were killed for sampling at different time points to track the temporal effect of maternal LY supplementation on changes in markers of intestinal health and development on postnatal days 0, 10, and 18, and postweaning days 7 and 14. Results showed that maternal LY supplementation affected several markers of health and development in the offspring, especially the expression of tight junction proteins, inflammatory cytokines, and antioxidant enzymes. These results indicate that nutritional intervention during gestation and lactation could serve as an effective strategy for raising piglets with better health and growth performance.


Asunto(s)
Suplementos Dietéticos , Saccharomyces cerevisiae , Femenino , Embarazo , Animales , Porcinos , Calostro/metabolismo , Citocinas/genética , Citocinas/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Dieta/veterinaria , Lactancia , Destete , ARN Mensajero/metabolismo , Alimentación Animal/análisis
9.
Microorganisms ; 12(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543522

RESUMEN

Injurious behaviors (i.e., aggressive pecking, feather pecking, and cannibalism) in laying hens are a critical issue facing the egg industry due to increased social stress and related health and welfare issues as well as economic losses. In humans, stress-induced dysbiosis increases gut permeability, releasing various neuroactive factors, causing neuroinflammation and related neuropsychiatric disorders via the microbiota-gut-brain axis, and consequently increasing the frequency and intensity of aggression and violent behaviors. Restoration of the imbalanced gut microbial composition has become a novel treatment strategy for mental illnesses, such as depression, anxiety, bipolar disorder, schizophrenia, impulsivity, and compulsivity. A similar function of modulating gut microbial composition following stress challenge may be present in egg-laying chickens. The avian cecum, as a multi-purpose organ, has the greatest bacterial biodiversity (bacterial diversity, richness, and species composition) along the gastrointestinal tract, with vitally important functions in maintaining physiological and behavioral homeostasis, especially during the periods of stress. To identify the effects of the gut microbiome on injurious behaviors in egg-laying chickens, we have designed and tested the effects of transferring cecal contents from two divergently selected inbred chicken lines on social stress and stress-related injurious behaviors in recipient chicks of a commercial layer strain. This article reports the outcomes from a multi-year study on the modification of gut microbiota composition to reduce injurious behaviors in egg-laying chickens. An important discovery of this corpus of experiments is that injurious behaviors in chickens can be reduced or inhibited through modifying the gut microbiota composition and brain serotonergic activities via the gut-brain axis, without donor-recipient genetic effects.

10.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516453

RESUMEN

In the current study, we hypothesized that an increase in dietary ileal indigestible protein concentration induces an increase in hindgut nitrogen utilization and nitrogen excretion and a shift in fecal microbiota in growing pigs, when compared to pigs given a high total protein diet. Three diets were prepared: 1) standard protein diet based on corn and soybean meal, 2) high-indigestible protein diet in which autoclaved, low-digestible soybean meal replaced soybean meal in the first diet, and 3) high protein diet where the inclusion rate of soybean meal was greater than that of the other diets. The 3 diets were fed to 18 barrows that were fitted with T-cannula at the ileo-cecal junction (initial body weight = 63.4 ±â€…8.0 kg) in a randomized complete block design with body weight as a blocking factor. Pigs were individually housed in pens and the experiment lasted for 23 d. On days 7 and 21, fecal samples were collected by rectal massage for microbiota analysis. Grab samples of feces were collected on days 20 and 21, and ileal digesta were collected on days 22 and 23 for the determination of energy and nitrogen utilization. Lower apparent ileal digestibility of nitrogen in the high-indigestible protein diet containing autoclaved soybean meal resulted in greater ileal indigestible nitrogen concentration (P < 0.05). Apparent total tract digestibility of nitrogen was lower (P < 0.05), and correspondingly nitrogen concentration and daily fecal nitrogen output were greater (P < 0.05) in the high-indigestible protein diet compared with the other diets. Apparent post-ileal digestibility and hindgut disappearance of nitrogen and gross energy were the greatest (P < 0.05) in the high protein diet, whereas a statistical difference was not observed in those variables between the standard protein diet and the high-indigestible protein diet. Beta diversity metrics of feces in the high-indigestible protein diet on day 21 were different (q < 0.05) from those in the other two diets, which indicates a shift in microbial communities. According to the results of the DESeq2, the direction of microbiota shift induced by the high-indigestible protein diet may have reduced fiber utilization in the hindgut. In conclusion, an increase in dietary ileal indigestible protein concentration increased fecal nitrogen excretion and shifted fecal microbial communities but did not increase nitrogen utilization in the hindgut.


Dietary protein concentration has been gradually reduced because reductions in protein concentration in swine diets are known to be beneficial in terms of feed costs, nitrogen excretion, and intestinal microbiota. However, ileal indigestible protein concentration may be more influential in those variables of pigs compared with total protein concentration in diets because ileal indigestible protein considers both protein concentration and digestibility of diets. In the current study, three diets were prepared: 1) corn-soybean meal diet, 2) high-indigestible protein diet replacing soybean meal in the first diet with autoclaved soybean meal, and 3) high protein diet where the inclusion rate of soybean meal was greater than that of the other diets. The experimental diets were fed to cannulated pigs and ileal digesta and fecal samples were collected. Fecal nitrogen output was greater in pigs fed the high-indigestible protein diet. Fecal microbiota was shifted by the high-indigestible protein diet, and this shift may not be beneficial. In conclusion, the impact of changes in ileal indigestible protein on fecal nitrogen excretion and fecal microbiota may be greater compared to changes in total protein concentration of diets in growing pigs.


Asunto(s)
Digestión , Nitrógeno , Porcinos , Animales , Nitrógeno/metabolismo , Heces , Dieta/veterinaria , Íleon/metabolismo , Glycine max/metabolismo , Peso Corporal , Alimentación Animal/análisis , Zea mays/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales
11.
Microbiol Spectr ; 11(6): e0172223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37815394

RESUMEN

IMPORTANCE: The swine gut microbiome undergoes an age-dependent assembly pattern with a developmental phase at early ages and a stabilization phase at later ages. Shorter time intervals and a wider range of data sources provided a clearer understanding of the gut microbiota colonization and succession and their associations with pig growth and development. The rapidly changing microbiota of suckling and weaning pigs implies potential time targets for growth and health regulation through gut microbiota manipulation. Since swine gut microbiota development is predictable, swine microbiota age can be calculated and compared between animal treatment groups rather than relying only on static time-matched comparisons.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Porcinos , Animales , Microbioma Gastrointestinal/fisiología , ARN Ribosómico 16S , Destete
12.
J Anim Sci Biotechnol ; 14(1): 66, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37127691

RESUMEN

BACKGROUND: Accumulating evidence from human trials and rodent studies has indicated that modulation of gut microbiota affects host physiological homeostasis and behavioral characteristics. Similarly, alterations in gut microbiota could be a feasible strategy for reducing aggressive behavior and improving health in chickens. The study was conducted to determine the effects of early-life cecal microbiota transplantation (CMT) on cecal microbial composition, brain serotonergic activity, and aggressive behavior of recipient chickens. METHODS: Chicken lines 63 and 72 with nonaggressive and aggressive behavior, respectively, were used as donors and a commercial strain Dekalb XL was used as recipients for CMT. Eighty-four 1-d-old male chicks were randomly assigned to 1 of 3 treatments with 7 cages per treatment and 4 chickens per cage (n = 7): saline (control, CTRL), cecal solution of line 63 (63-CMT), and cecal solution of line 72 (72-CMT). Transplantation was conducted via oral gavage once daily from d 1 to 10, and then boosted once weekly from week 3 to 5. At weeks 5 and 16, home-cage behavior was recorded, and chickens with similar body weights were assigned to paired aggression tests between the treatments. Samples of blood, brain, and cecal content were collected from the post-tested chickens to detect CMT-induced biological and microbiota changes. RESULTS: 63-CMT chickens displayed less aggressive behavior with a higher hypothalamic serotonergic activity at week 5. Correspondingly, two amplicon sequence variants (ASVs) belonging to Lachnospiraceae and one Ruminococcaceae UCG-005 ASV were positively correlated with the levels of brain tryptophan and serotonin, respectively. 72-CMT chickens had lower levels of brain norepinephrine and dopamine at week 5 with higher levels of plasma serotonin and tryptophan at week 16. ASVs belonging to Mollicutes RF39 and GCA-900066225 in 72-CMT chickens were negatively correlated with the brain 5-hydroxyindoleacetic acid (5-HIAA) at week 5, and one Bacteroides ASV was negatively correlated with plasma serotonin at week 16. CONCLUSION: Results indicate that CMT at an early age could regulate aggressive behavior via modulating the cecal microbial composition, together with central serotonergic and catecholaminergic systems in recipient chickens. The selected CMT could be a novel strategy for reducing aggressive behavior through regulating signaling along the microbiota-gut-brain axis.

13.
Front Vet Sci ; 10: 1297158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033643

RESUMEN

Introduction: Bovine respiratory disease (BRD) is a multifactorial disease complex in which bacteria in the upper respiratory tract play an important role in disease development. Previous studies have related the presence of four BRD-pathobionts (Mycoplasma bovis, Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica) in the upper respiratory tract to BRD incidence and mortalities in the dairy and beef cattle industry, but these studies typically only use one time point to compare the abundance of BRD-pathobionts between apparently healthy and BRD-affected cattle. The objective of this study was to characterize the longitudinal development of the nasopharyngeal (NP) microbiome from apparently healthy calves, and in calves with clinical signs of BRD, the microbiota dynamics from disease diagnosis to recovery. Methods: Deep nasopharyngeal swabs were taken from all calves immediately after transport (day 0). If a calf was diagnosed with BRD (n = 10), it was sampled, treated with florfenicol or tulathromycin, and sampled again 1, 5, and 10 days after antibiotic administration. Otherwise, healthy calves (n = 20) were sampled again on days 7 and 14. Bacterial community analysis was performed through 16S rRNA gene amplicon sequencing. Results: The NP microbiome of the healthy animals remained consistent throughout the study, regardless of time. The NP microbiota beta diversity and community composition was affected by tulathromycin or florfenicol administration. Even though BRD-pathobionts were identified by 16S rRNA gene sequencing in BRD-affected animals, no difference was observed in their relative abundance between the BRD-affected and apparently healthy animals. The abundance of BRD-pathobionts was not predictive of disease development while the relative abundance of BRD pathobionts was unique to each BRD-affected calf. Interestingly, at the end of the study period, the genera Mycoplasma was the most abundant genus in the healthy group, while Lactobacillus was the most abundant genus in the animals that recovered from BRD. Discussion: This study highlights that injected antibiotics seem to improve the NP microbiome composition (higher abundance of Lactobacillus and lower abundance of Mycoplasma), and that the relative abundance of BRD-pathobionts differs between individual calves but is not strongly predictive of BRD clinical signs, indicating that additional factors are likely important in the clinical progression of BRD.

14.
Anim Microbiome ; 5(1): 13, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36803311

RESUMEN

BACKGROUND: The livestock industry is striving to identify antibiotic alternatives to reduce the need to use antibiotics. Postbiotics, such as Saccharomyces cerevisiae fermentation product (SCFP), have been studied and proposed as potential non-antibiotic growth promoters due to their effects on animal growth and the rumen microbiome; however, little is known of their effects on the hind-gut microbiome during the early life of calves. The objective of this study was to measure the effect of in-feed SCFP on the fecal microbiome of Holstein bull calves through 4 months of age. Calves (n = 60) were separated into two treatments: CON (no SCFP added) or SCFP (SmartCare®, Diamond V, Cedar Rapids, IA, in milk replacer and NutriTek®, Diamond V, Cedar Rapids, IA, incorporated into feed), and were blocked by body weight and serum total protein. Fecal samples were collected on d 0, 28, 56, 84, and 112 of the study to characterize the fecal microbiome community. Data were analyzed as a completely randomized block design with repeated measures when applicable. A random-forest regression method was implemented to more fully understand community succession in the calf fecal microbiome of the two treatment groups. RESULTS: Richness and evenness of the fecal microbiota increased over time (P < 0.001), and SCFP calves tended to increase the evenness of the community (P = 0.06). Based on random-forest regression, calf age as predicted by microbiome composition was significantly correlated with the calf physiological age (R2 = 0.927, P < 1 × 10-15). Twenty-two "age-discriminatory" ASVs (amplicon sequence variants) were identified in the fecal microbiome that were shared between the two treatment groups. Of these, 6 ASVs (Dorea-ASV308, Lachnospiraceae-ASV288, Oscillospira-ASV311, Roseburia-ASV228, Ruminococcaceae-ASV89 and Ruminoccocaceae-ASV13) in the SCFP group reached their highest abundance in the third month, but they reached their highest abundance in the fourth month in the CON group. All other shared ASVs reached their highest abundance at the same timepoint in both treatment groups. CONCLUSIONS: Supplementation of SCFP altered the abundance dynamics of age discriminatory ASVs, suggesting a faster maturation of some members of the fecal microbiota in SCFP calves compared to CON calves. These results demonstrate the value of analyzing microbial community succession as a continuous variable to identify the effects of a dietary treatment.

15.
J Hazard Mater ; 457: 131761, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290355

RESUMEN

Concerns about antibiotic resistance genes (ARGs) released from wastewaters of livestock or fish farming into the natural environment are increasing, but studies on unculturable bacteria related to the dissemination of antibiotic resistance are limited. Here, we reconstructed 1100 metagenome-assembled genomes (MAGs) to assess the impact of microbial antibiotic resistome and mobilome in wastewaters discharged to Korean rivers. Our results indicate that ARGs harbored in the MAGs were disseminated from wastewater effluents into downstream rivers. Moreover, it was found that ARGs are more commonly co-localized with mobile genetic elements (MGEs) in agricultural wastewater than in river water. Among the effluent-derived phyla, uncultured members of the superphylum Patescibacteria possessed a high number of MGEs, along with co-localized ARGs. Our findings suggest that members of the Patesibacteria are a potential vector for propagating ARGs into the environmental community. Therefore, we propose that the dissemination of ARGs by uncultured bacteria should be further investigated in multiple environments.


Asunto(s)
Metagenómica , Aguas Residuales , Animales , Metagenómica/métodos , Agua , Farmacorresistencia Microbiana/genética , Bacterias/genética , Antibacterianos/farmacología , Genes Bacterianos , Ríos/microbiología
16.
Front Vet Sci ; 10: 1165994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441557

RESUMEN

Introduction: Effective identification and treatment of bovine respiratory disease (BRD) is an ongoing health and economic issue for the dairy and beef cattle industries. Bacteria pathogens Pasteurellamultocida, Mycoplasmabovis, Mannheimia haemolytica, and Histophilus somni and the virus Bovine herpesvirus-1 (BHV-1), Bovine parainfluenza-3 virus (BPIV-3), Bovine respiratory syncytial virus (BRSV), Bovine adenovirus 3 (BAdV3), bovine coronavirus (BoCV) and Bovine viral diarrhea virus (BVDV) have commonly been identified in BRD cattle; however, no studies have investigated the fungal community and how it may also relate to BRD. Methods: The objective of this study was to understand if the nasal mycobiome differs between a BRD-affected (n = 56) and visually healthy (n = 73) Holstein steers. Fungal nasal community was determined by using Internal Transcribed Spacer (ITS) sequencing. Results: The phyla, Ascomycota and Basidiomycota, and the genera, Trichosporon and Issatchenkia, were the most abundant among all animals, regardless of health status. We identified differences between healthy and BRD animals in abundance of Trichosporon and Issatchenkia orientalis at a sub-species level that could be a potential indicator of BRD. No differences were observed in the nasal fungal alpha and beta diversity between BRD and healthy animals. However, the fungal community structure was affected based on season, specifically when comparing samples collected in the summer to the winter season. We then performed a random forest model, based on the fungal community and abundance of the BRD-pathobionts (qPCR data generated from a previous study using the same animals), to classify healthy and BRD animals and determine the agreement with visual diagnosis. Classification of BRD or healthy animals using ITS sequencing was low and agreed with the visual diagnosis with an accuracy of 51.9%. A portion of the ITS-predicted BRD animals were not predicted based on the abundance of BRD pathobionts. Lastly, fungal and bacterial co-occurrence were more common in BRD animals than healthy animals. Discussion: The results from this novel study provide a baseline understanding of the fungal diversity and composition in the nasal cavity of BRD and healthy animals, upon which future interaction studies, including other nasal microbiome members to further understand and accurately diagnose BRD, can be designed.

17.
mLife ; 2(4): 350-364, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38818274

RESUMEN

The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.

18.
Bioorg Med Chem Lett ; 22(7): 2536-43, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22401863

RESUMEN

Lipid A is an essential component of the Gram negative outer membrane, which protects the bacterium from attack of many antibiotics. The Lipid A biosynthesis pathway is essential for Gram negative bacterial growth and is unique to these bacteria. The first committed step in Lipid A biosynthesis is catalysis by LpxC, a zinc dependent deacetylase. We show the design of an LpxC inhibitor utilizing a robust model which directed efficient design of picomolar inhibitors. Analysis of physiochemical properties drove design to focus on an optimal lipophilicity profile. Further structure based design took advantage of a conserved water network over the active site, and with the optimal lipophilicity profile, led to an improved LpxC inhibitor with in vivo activity against wild type Pseudomonas aeruginosa.


Asunto(s)
Amidohidrolasas/química , Antibacterianos/síntesis química , Inhibidores Enzimáticos/síntesis química , Ácidos Hidroxámicos/síntesis química , Pseudomonas aeruginosa/efectos de los fármacos , Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Dominio Catalítico , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Hidroxámicos/farmacología , Lípido A/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Unión Proteica , Pseudomonas aeruginosa/enzimología , Relación Estructura-Actividad , Agua/química
20.
Microorganisms ; 10(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35744601

RESUMEN

The gut microbiota plays an important role in regulating brain function, influencing psychological and emotional stability. The correlations between conspecific aggression, gut microbiota, and physiological homeostasis were further studied in inbred laying chicken lines, 63 and 72, which were diversely selected for Marek's disease, and they also behave differently in aggression. Ten sixty-week-old hens from each line were sampled for blood, brain, and cecal content. Neurotransmitters, cytokines, corticosterone, and heterophil/lymphocyte ratios were determined. Cecal microbiota compositions were determined by bacterial 16s rRNA sequencing, and functional predictions were performed. Our data showed that the central serotonin and tryptophan levels were higher in line 63 compared to line 72 (p < 0.05). Plasma corticosterone, heterophil/lymphocyte ratios, and central norepinephrine were lower in line 63 (p < 0.05). The level of tumor necrosis factor α tended to be higher in line 63. Faecalibacterium, Oscillibacter, Butyricicoccus, and Bacteriodes were enriched in line 63 birds, while Clostridiales vadin BB60, Alistipes, Mollicutes RF39 were dominated in line 72. From the predicted bacterial functional genes, the kynurenine pathway was upregulated in line 72. These results suggested a functional linkage of the line differences in serotonergic activity, stress response, innate immunity, and gut microbiota populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA