RESUMEN
Mutations that lead to splicing defects can have severe consequences on gene function and cause disease. Here, we explore how human genetic variation affects exon recognition by developing a multiplexed functional assay of splicing using Sort-seq (MFASS). We assayed 27,733 variants in the Exome Aggregation Consortium (ExAC) within or adjacent to 2,198 human exons in the MFASS minigene reporter and found that 3.8% (1,050) of variants, most of which are extremely rare, led to large-effect splice-disrupting variants (SDVs). Importantly, we find that 83% of SDVs are located outside of canonical splice sites, are distributed evenly across distinct exonic and intronic regions, and are difficult to predict a priori. Our results indicate extant, rare genetic variants can have large functional effects on splicing at appreciable rates, even outside the context of disease, and MFASS enables their empirical assessment at scale.
Asunto(s)
Exones , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Empalme del ARN , Análisis de Secuencia de ADN/métodos , Separación Celular , Biología Computacional , Citometría de Flujo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Intrones , Células K562 , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los ResultadosRESUMEN
The use of hybrid hemoglobin (Hb), with mesoheme substituted for protoheme, allows separate monitoring of the α or ß hemes along the allosteric pathway. Using resonance Raman (rR) spectroscopy in silica gel, which greatly slows protein motions, we have observed that the Fe-histidine stretching frequency, νFeHis, which is a monitor of heme reactivity, evolves between frequencies characteristic of the R and T states, for both α or ß chains, prior to the quaternary R-T and T-R shifts. Computation of νFeHis, using QM/MM and the conformational search program PELE, produced remarkable agreement with experiment. Analysis of the PELE structures showed that the νFeHis shifts resulted from heme distortion and, in the α chain, Fe-His bond tilting. These results support the tertiary two-state model of ligand binding (Henry et al., Biophys. Chem. 2002, 98, 149). Experimentally, the νFeHis evolution is faster for ß than for α chains, and pump-probe rR spectroscopy in solution reveals an inflection in the νFeHis time course at 3 µs for ß but not for α hemes, an interval previously shown to be the first step in the R-T transition. In the α chain νFeHis dropped sharply at 20 µs, the final step in the R-T transition. The time courses are fully consistent with recent computational mapping of the R-T transition via conjugate peak refinement by Karplus and co-workers (Fischer et al., Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 5608). The effector molecule IHP was found to lower νFeHis selectively for α chains within the R state, and a binding site in the α1α2 cleft is suggested.
Asunto(s)
Biología Computacional/métodos , Hemo/química , Hemoglobina A/química , Espectrometría Raman/métodos , Globinas alfa/química , Globinas beta/química , Regulación Alostérica , Mesoporfirinas/química , Modelos Moleculares , Estructura Cuaternaria de ProteínaRESUMEN
Amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. Here we introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In a second application, we designed fibers that facilitate retroviral gene transfer. By measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.
Asunto(s)
Amiloide/química , Diseño de Fármacos , Secuencia de Aminoácidos , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Células HEK293 , VIH-1/genética , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Estructura Secundaria de Proteína , Transducción GenéticaRESUMEN
The NCI60 human tumor cell line screen has been in operation as a service to the cancer research community for more than 30 years. The screen operated with 96-well plates, a 2-day exposure period to test agents, and following cell fixation, a visible absorbance endpoint by the protein-staining dye sulforhodamine B. In this study, we describe the next phase of this important cancer research tool, the HTS384 NCI60 screen. Although the cell lines remain the same, the updated screen is performed with 384-well plates, a 3-day exposure period to test agents, and a luminescent endpoint to measure cell viability based upon cellular ATP content. In this study, a library of 1,003 FDA-approved and investigational small-molecule anticancer agents was screened by the two NCI60 assays. The datasets were compared with a focus on targeted agents with at least six representatives in the library. For many agents, including inhibitors of EGFR, BRAF, MEK, ERK, and PI3K, the patterns of GI50 values were very similar between the screens with strong correlations between those patterns within the dataset from each screen. However, for some groups of targeted agents, including mTOR, BET bromodomain, and NAMPRTase inhibitors, there were limited or no correlations between the two datasets, although the patterns of GI50 values and correlations between those patterns within each dataset were apparent. Beginning in January 2024, the HTS384 NCI60 screen became the free screening service of the NCI to facilitate drug discovery by the cancer research community. Significance: The new NCI60 cell line screen HTS384 shows robust patterns of response to oncology agents and substantial overlap with the classic screen, providing an updated tool for studying therapeutic agents. See related commentary by Colombo and Corsello, p. 2397.
Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Supervivencia Celular/efectos de los fármacosRESUMEN
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates genes of drug transporters and metabolic enzymes to detoxify small molecule xenobiotics. It has a complex role in cancer biology, influencing both the progression and suppression of tumors by modulating malignant properties of tumor cells and anti-tumor immunity, depending on the specific tumor type and developmental stage. This has led to the discovery and development of selective AhR modulators, including BAY 2416964 which is currently in clinical trials. To identify small molecule anticancer agents that might be combined with AhR antagonists for cancer therapy, a high-throughput combination screen was performed using multi-cell type tumor spheroids grown from malignant cells, endothelial cells, and mesenchymal stem cells. The AhR selective antagonists BAY 2416964, GNF351, and CH-223191 were tested individually and in combination with twenty-five small molecule anticancer agents. As single agents, BAY 2416964 and CH-223191 showed minimal activity, whereas GNF351 reduced the viability of some spheroid models at concentrations greater than 1 µM. The activity of most combinations aligned well with the single agent activity of the combined agent, without apparent contributions from the AhR antagonist. All three AhR antagonists sensitized tumor spheroids to TAK-243, an E1 ubiquitin-activating enzyme inhibitor. These combinations were active in spheroids containing bladder, breast, ovary, kidney, pancreas, colon, and lung tumor cell lines. The AhR antagonists also potentiated pevonedistat, a selective inhibitor of the NEDD8-activating enzyme E1 regulatory subunit, in several tumor spheroid models. In contrast, the AhR antagonists did not enhance the cytotoxicity of the proteasome inhibitor bortezomib.
RESUMEN
The C-terminally-truncated human prion protein variant Y145Stop (or PrP23-144), associated with a familial prion disease, provides a valuable model for studying the fundamental properties of protein amyloids. In previous solid-state NMR experiments, we established that the ß-sheet core of the PrP23-144 amyloid is composed of two ß-strand regions encompassing residues â¼113-125 and â¼130-140. The former segment contains a highly conserved hydrophobic palindrome sequence, (113)AGAAAAGA(120), which has been considered essential to PrP conformational conversion. Here, we examine the role of this segment in fibrillization of PrP23-144 using a deletion variant, Δ113-120 PrP23-144, in which the palindrome sequence is missing. Surprisingly, we find that deletion of the palindrome sequence affects neither the amyloidogenicity nor the polymerization kinetics of PrP23-144, although it does alter amyloid conformation and morphology. Using two-dimensional and three-dimensional solid-state NMR methods, we find that Δ113-120 PrP23-144 fibrils contain an altered ß-core extended N-terminally to residue â¼106, encompassing residues not present in the core of wild-type PrP23-144 fibrils. The C-terminal ß-strand of the core, however, is similar in both fibril types. Collectively, these data indicate that amyloid cores of PrP23-144 variants contain "essential" (i.e. nucleation-determining) and "nonessential" regions, with the latter being "movable" in amino acid sequence space. These findings reveal an intriguing new mechanism for structural polymorphism in amyloids and suggest a potential means for modulating the physicochemical properties of amyloid fibrils without compromising their polymerization characteristics.
Asunto(s)
Amiloide/química , Amiloide/genética , Polimorfismo Genético , Priones/química , Escherichia coli/metabolismo , Eliminación de Gen , Humanos , Cinética , Espectroscopía de Resonancia Magnética/métodos , Microscopía de Fuerza Atómica/métodos , Enfermedades por Prión/metabolismo , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas/química , Espectroscopía Infrarroja por Transformada de Fourier/métodosRESUMEN
Encapsulation of hemoglobin (Hb) in silica gel preserves structure and function but greatly slows protein motion, thereby providing access to intermediates along the allosteric pathway that are inaccessible in solution. Resonance Raman (RR) spectroscopy with visible and ultraviolet laser excitation provides probes of heme reactivity and of key tertiary and quaternary contacts. These probes were monitored in gels after deoxygenation of oxyHb and after CO binding to deoxyHb, which initiate conformational change in the R-T and T-R directions, respectively. The spectra establish that quaternary structure change in the gel takes a week or more but that the evolution of heme reactivity, as monitored by the Fe-histidine stretching vibration, ν(FeHis), is completed within two days, and is therefore uncoupled from the quaternary structure. Within each quaternary structure, the evolving ν(FeHis) frequencies span the full range of values between those previously associated with the high- and low-affinity end states, R and T. This result supports the tertiary two-state (TTS) model, in which the Hb subunits can adopt high- and low-affinity tertiary structures, r and t, within each quaternary state. The spectra also reveal different tertiary pathways, involving the breaking and reformation of E and F interhelical contacts in the R-T direction but not the T-R direction. In the latter, tertiary motions are restricted by the T quaternary contacts.
Asunto(s)
Hemo/metabolismo , Hemoglobina A/metabolismo , Proteínas Inmovilizadas/metabolismo , Espectrometría Raman/métodos , Monóxido de Carbono/metabolismo , Hemo/química , Hemoglobina A/química , Humanos , Proteínas Inmovilizadas/química , Modelos Moleculares , Estructura Terciaria de ProteínaRESUMEN
Frequent and widespread testing of members of the population who are asymptomatic for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the mitigation of the transmission of the virus. Despite the recent increases in testing capacity, tests based on quantitative polymerase chain reaction (qPCR) assays cannot be easily deployed at the scale required for population-wide screening. Here, we show that next-generation sequencing of pooled samples tagged with sample-specific molecular barcodes enables the testing of thousands of nasal or saliva samples for SARS-CoV-2 RNA in a single run without the need for RNA extraction. The assay, which we named SwabSeq, incorporates a synthetic RNA standard that facilitates end-point quantification and the calling of true negatives, and that reduces the requirements for automation, purification and sample-to-sample normalization. We used SwabSeq to perform 80,000 tests, with an analytical sensitivity and specificity comparable to or better than traditional qPCR tests, in less than two months with turnaround times of less than 24 h. SwabSeq could be rapidly adapted for the detection of other pathogens.
Asunto(s)
ARN Viral/genética , SARS-CoV-2/patogenicidad , Saliva/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , SARS-CoV-2/genética , Sensibilidad y EspecificidadRESUMEN
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to the high rates of transmission by individuals who are asymptomatic at the time of transmission1,2. Frequent, widespread testing of the asymptomatic population for SARS-CoV-2 is essential to suppress viral transmission. Despite increases in testing capacity, multiple challenges remain in deploying traditional reverse transcription and quantitative PCR (RT-qPCR) tests at the scale required for population screening of asymptomatic individuals. We have developed SwabSeq, a high-throughput testing platform for SARS-CoV-2 that uses next-generation sequencing as a readout. SwabSeq employs sample-specific molecular barcodes to enable thousands of samples to be combined and simultaneously analyzed for the presence or absence of SARS-CoV-2 in a single run. Importantly, SwabSeq incorporates an in vitro RNA standard that mimics the viral amplicon, but can be distinguished by sequencing. This standard allows for end-point rather than quantitative PCR, improves quantitation, reduces requirements for automation and sample-to-sample normalization, enables purification-free detection, and gives better ability to call true negatives. After setting up SwabSeq in a high-complexity CLIA laboratory, we performed more than 80,000 tests for COVID-19 in less than two months, confirming in a real world setting that SwabSeq inexpensively delivers highly sensitive and specific results at scale, with a turn-around of less than 24 hours. Our clinical laboratory uses SwabSeq to test both nasal and saliva samples without RNA extraction, while maintaining analytical sensitivity comparable to or better than traditional RT-qPCR tests. Moving forward, SwabSeq can rapidly scale up testing to mitigate devastating spread of novel pathogens.
RESUMEN
In eukaryotes, transcription factors (TFs) orchestrate gene expression by binding to TF-binding sites (TFBSs) and localizing transcriptional co-regulators and RNA polymerase II to cis-regulatory elements. However, we lack a basic understanding of the relationship between TFBS composition and their quantitative transcriptional responses. Here, we measured expression driven by 17,406 synthetic cis-regulatory elements with varied compositions of a model TFBS, the c-AMP response element (CRE) by using massively parallel reporter assays (MPRAs). We find CRE number, affinity, and promoter proximity largely determines expression. In addition, we observe expression modulation based on the spacing between CREs and CRE distance to the promoter, where expression follows a helical periodicity. Finally, we compare library expression between an episomal MPRA and a genomically integrated MPRA, where a single cis-regulatory element is assayed per cell at a defined locus. These assays largely recapitulate each other, although weaker, non-canonical CREs exhibit greater activity in a genomic context.
Asunto(s)
Adenosina Monofosfato/metabolismo , Genómica/métodos , Plásmidos/metabolismo , Elementos de Respuesta/genética , HumanosRESUMEN
The >800 human G protein-coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state- and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here, we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G protein signal transduction. We tested 7800 of 7828 possible single amino acid substitutions to the beta-2 adrenergic receptor (ß2AR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for ß2AR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we identify residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors.
Asunto(s)
Análisis Mutacional de ADN/métodos , Receptores Acoplados a Proteínas G/química , Clonación Molecular , Código de Barras del ADN Taxonómico , Edición Génica , Células HEK293 , Humanos , Aprendizaje Automático , Modelos Moleculares , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
Amyloid formation occurs via numerous complex mechanisms, often involving intermediates. This study examines the mechanism of amyloidogenesis in two N-terminal fragments of serum amyloid A (SAA), which are known to exhibit dramatically different amyloid structures. Fibrillization kinetics by these peptides are found to exhibit two unusual features: slower rates at higher peptide concentration, and complete insensitivity to addition of pre-formed seed. Additionally, we find that these peptides form micelle-like oligomers in solution. Our results imply an unusual dual role of micellar oligomers in amyloidogenesis, in which these particles act both as an off-pathway reservoir of peptide, and an inhibitory aggregate that slows amyloid growth. We anticipate that this mechanism of fibril formation may exist in other hydrophobic amyloid-forming peptides and proteins.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Biopolímeros/metabolismo , Micelas , Multimerización de Proteína , Proteína Amiloide A Sérica/metabolismo , Péptidos beta-Amiloides/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Unión Proteica , Proteína Amiloide A Sérica/químicaRESUMEN
G protein-coupled receptors (GPCRs) are central to how mammalian cells sense and respond to chemicals. Mammalian olfactory receptors (ORs), the largest family of GPCRs, mediate the sense of smell through activation by small molecules, though for most bonafide ligands, they have not been identified. Here, we introduce a platform to screen large chemical panels against multiplexed GPCR libraries using next-generation sequencing of barcoded genetic reporters in stably engineered human cell lines. We mapped 39 mammalian ORs against 181 odorants and identified 79 interactions that have not been reported to our knowledge, including ligands for 15 previously orphaned receptors. This multiplexed receptor assay allows the cost-effective mapping of large chemical libraries to receptor repertoires at scale.
Asunto(s)
Odorantes , Receptores Odorantes/metabolismo , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Olfato , Animales , Línea Celular , Perfilación de la Expresión Génica , Humanos , Ligandos , Mamíferos/metabolismo , Mamíferos/fisiologíaRESUMEN
Oxidation of methionine residues in calmodulin (CaM) lowers the affinity for calcium and results in an inability to activate target proteins fully. To evaluate the structural consequences of CaM oxidation, we used infrared difference spectroscopy to identify oxidation-dependent effects on protein conformation and calcium liganding. Oxidation-induced changes include an increase in hydration of alpha-helices, as indicated in the downshift of the amide I' band of both apo-CaM and Ca(2+)-CaM, and a modification of calcium liganding by carboxylate side chains, reflected in antisymmetric carboxylate band shifts. Changes in carboxylate ligands are consistent with the model we propose: an Asp at position 1 of the EF-loop experiences diminished hydrogen bonding with the polypeptide backbone, an Asp at position 3 forms a bidentate coordination of calcium, and an Asp at position 5 forms a pseudobridging coordination with a calcium-bound water molecule. The bidentate coordination of calcium by conserved glutamates is unaffected by oxidation. The observed changes in calcium ligation are discussed in terms of the placement of methionine side chains relative to the calcium-binding sites, suggesting that varying sensitivities of binding sites to oxidation may underlie the loss of CaM function upon oxidation.
Asunto(s)
Calcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Metionina/metabolismo , Absorción , Secuencia de Aminoácidos , Animales , Sitios de Unión , Ácidos Carboxílicos , Ligandos , Datos de Secuencia Molecular , Oxidación-Reducción , Estabilidad Proteica , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Amyloid polymorphism presents a challenge to physical theories of amyloid formation and stability. The amyloidogenic protein serum amyloid A (SAA) exhibits complex and unexplained structural polymorphism in its N-terminal fragments: the N-terminal 11-residue peptide (SAA1-11) forms left-handed helical fibrils, while extension by one residue (SAA1-12) produces a rare right-handed amyloid. In this study, we use a combination of vibrational spectroscopy and ultramicroscopy to examine fibrils of these peptides and their terminally acetylated and amidated variants, in an effort to uncover the physical basis for this effect. Raman spectroscopy and atomic force microscopy provide evidence that SAA1-12 forms a ß-helical fibril architecture, while SAA1-11 forms more typical stacked ß-sheets. Importantly, N-terminal acetylation blocks fibril formation by SAA1-12 with no effect on SAA1-11, while C-terminal amidation has nearly the opposite effect. Together, these data suggest distinct electrostatic interactions at the N- and C-termini stabilize the two fibril structures; we propose model fibril structures in which C-terminal extension changes the favored intermolecular interaction between peptide monomers from an Arg1-C-terminus charge pair to an N-terminus-C-terminus charge pair. This model suggests a general mechanism for charge-mediated amyloid polymorphism and may inform strategies for design of peptide-based nanomaterials stabilized by engineered intermolecular contacts.
Asunto(s)
Fragmentos de Péptidos/química , Proteína Amiloide A Sérica/química , Electricidad Estática , Fragmentos de Péptidos/síntesis química , Conformación Proteica , Proteína Amiloide A Sérica/síntesis químicaRESUMEN
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.
Asunto(s)
Amiloide/metabolismo , Demencia/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Amiloide/aislamiento & purificación , Amiloide/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Glicoproteínas de Membrana , Proteínas de la Membrana , Microscopía de Fuerza Atómica , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/ultraestructura , Estructura Secundaria de ProteínaRESUMEN
Immersive software tools are virtual environments designed to give their users an augmented view of real-world data and ways of manipulating that data. As virtual environments, every action users make while interacting with these tools can be carefully logged, as can the state of the software and the information it presents to the user, giving these actions context. This data provides a high-resolution lens through which dynamic cognitive and behavioral processes can be viewed. In this report, we describe new methods for the analysis and interpretation of such data, utilizing a novel implementation of the Beta Process Hidden Markov Model (BP-HMM) for analysis of software activity logs. We further report the results of a preliminary study designed to establish the validity of our modeling approach. A group of 20 participants were asked to play a simple computer game, instrumented to log every interaction with the interface. Participants had no previous experience with the game's functionality or rules, so the activity logs collected during their naïve interactions capture patterns of exploratory behavior and skill acquisition as they attempted to learn the rules of the game. Pre- and post-task questionnaires probed for self-reported styles of problem solving, as well as task engagement, difficulty, and workload. We jointly modeled the activity log sequences collected from all participants using the BP-HMM approach, identifying a global library of activity patterns representative of the collective behavior of all the participants. Analyses show systematic relationships between both pre- and post-task questionnaires, self-reported approaches to analytic problem solving, and metrics extracted from the BP-HMM decomposition. Overall, we find that this novel approach to decomposing unstructured behavioral data within software environments provides a sensible means for understanding how users learn to integrate software functionality for strategic task pursuit.
RESUMEN
Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well-known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this article, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca(2+) binding. This spectral difference is entirely due to differences in tertiary contacts at the interdomain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.
Asunto(s)
Calmodulina/química , Desplegamiento Proteico , Calmodulina/metabolismo , Modelos Moleculares , Conformación Proteica , Espectrometría Raman , TemperaturaRESUMEN
Whereas the ventral visual processing stream mediates facial and object recognition, the dorsal stream mediates recognition of spatial relationships. In addition, ventral lesions have been reported to induce visual inattention to the upper visual field and dorsal lesions inattention to the lower field. The purpose of this study is to test the hypothesis that activation of the ventral stream will induce an upward attentional bias and activation of the dorsal stream, a downward bias, as assessed by vertical line bisection tests. Twelve healthy right-handed individuals performed vertical line bisections. During these trials, either pictures of famous faces or dots in different spatial locations were presented above and below the line. The participants were asked to recognize and remember the faces or locations of dots while they performed the bisections. In control trials, they were no faces or dots. An upward bias was observed in all conditions. This upward bias was significantly increased in the face recognition and recall condition, but not altered in the dot location condition. Although the face task appeared to activate the ventral stream and increase the upward vertical bias, the failure of the dot localization task to alter the bias may be related task selection. Dorsolateral lesions cause optic ataxia, a disorder of the egocentric "where" system, and the dot location task in this study was allocentric. Thus, further research will be needed to learn whether an egocentric spatial localization task, with a memory component, will alter the vertical attentional bias.
Asunto(s)
Atención/fisiología , Reconocimiento Visual de Modelos/fisiología , Reconocimiento en Psicología/fisiología , Percepción Espacial/fisiología , Vías Visuales/fisiología , Adolescente , Análisis de Varianza , Cara , Femenino , Humanos , Masculino , Valores de Referencia , Adulto JovenRESUMEN
A self-perpetuating conformational conversion of the prion protein (PrP) is believed to underlie pathology and transmission of prion diseases. Here we explore the effects of N-terminal pathogenic mutations (P102L, P105L, A117V) and the residue 129 polymorphism on amyloid fibril formation by the human PrP fragment 23-144, an in vitro conversion model that can reproduce certain characteristics of prion replication such as strains and species barriers. We find that these amino acid substitutions neither affect PrP23-144 amyloidogenicity nor introduce barriers to cross-seeding of soluble protein. However, the polymorphism strongly influences the conformation of the amyloid fibrils, as determined by infrared spectroscopy. Intriguingly, unlike conformational features governed by the critical amyloidogenic region of PrP23-144 (residues 138-139), the structural features distinguishing Met-129 and Val-129 PrP23-144 amyloid fibrils are not transmissible by cross-seeding. While based only on in vitro data, these findings provide fundamental insight into the mechanism of prion-based conformational transmission, indicating that only conformational features controlling seeding specificity (e.g. those in critical intermolecular contact sites of amyloid fibrils) are necessarily transmissible by cross-seeding; conformational traits in other parts of the PrP molecule may not be "heritable" from the amyloid template.