Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 584(7821): 398-402, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32759999

RESUMEN

Land use change-for example, the conversion of natural habitats to agricultural or urban ecosystems-is widely recognized to influence the risk and emergence of zoonotic disease in humans1,2. However, whether such changes in risk are underpinned by predictable ecological changes remains unclear. It has been suggested that habitat disturbance might cause predictable changes in the local diversity and taxonomic composition of potential reservoir hosts, owing to systematic, trait-mediated differences in species resilience to human pressures3,4. Here we analyse 6,801 ecological assemblages and 376 host species worldwide, controlling for research effort, and show that land use has global and systematic effects on local zoonotic host communities. Known wildlife hosts of human-shared pathogens and parasites overall comprise a greater proportion of local species richness (18-72% higher) and total abundance (21-144% higher) in sites under substantial human use (secondary, agricultural and urban ecosystems) compared with nearby undisturbed habitats. The magnitude of this effect varies taxonomically and is strongest for rodent, bat and passerine bird zoonotic host species, which may be one factor that underpins the global importance of these taxa as zoonotic reservoirs. We further show that mammal species that harbour more pathogens overall (either human-shared or non-human-shared) are more likely to occur in human-managed ecosystems, suggesting that these trends may be mediated by ecological or life-history traits that influence both host status and tolerance to human disturbance5,6. Our results suggest that global changes in the mode and the intensity of land use are creating expanding hazardous interfaces between people, livestock and wildlife reservoirs of zoonotic disease.


Asunto(s)
Biodiversidad , Especificidad del Huésped , Zoonosis/microbiología , Zoonosis/parasitología , Zoonosis/virología , Animales , Aves/microbiología , Aves/parasitología , Aves/virología , Humanos , Mamíferos/microbiología , Mamíferos/parasitología , Mamíferos/virología , Especificidad de la Especie , Zoonosis/transmisión
2.
Glob Chang Biol ; 27(7): 1319-1321, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508882

RESUMEN

Spillover of novel pathogens from wildlife to people, such as the virus responsible for the COVID-19 pandemic, is increasing and this trend is most strongly associated with tropical deforestation driven by agricultural expansion. This same process is eroding natural capital, reducing forest-associated health co-benefits, and accelerating climate change. Protecting and promoting tropical forests is one of the most immediate steps we can take to simultaneously mitigate climate change while reducing the risk of future pandemics; however, success in this undertaking will require greater connectivity of policy initiatives from local to global, as well as unification of health and environmental policy.


Asunto(s)
COVID-19 , Política Ambiental , Conservación de los Recursos Naturales , Bosques , Humanos , Pandemias , SARS-CoV-2 , Clima Tropical
3.
Conserv Biol ; 35(2): 472-482, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749018

RESUMEN

Although threats to global biodiversity are well known, slowing current rates of biodiversity loss remains a challenge. The Aichi targets set out 20 goals on which the international community should act to alleviate biodiversity decline, 1 of which (Target 1) aims to raise public awareness of the importance of biodiversity. Although conventional indicators for Target 1 are of low spatial and temporal coverage, conservation culturomics metrics show how biodiversity awareness can be quantified at the global scale. Following methods used for the Living Planet Index, we devised a species awareness index (SAI) to measure change in species awareness based on Wikipedia views. We calculated this index at the page level for 41,197 species listed by the International Union for Conservation of Nature (IUCN) across 10 Wikipedia languages and >2 billion views from 1 July 2015 to 30 March 2020. Bootstrapped indices for the page-level SAI showed that overall awareness of biodiversity increased marginally over time, although there were differences among taxonomic classes and languages. Among taxonomic classes, overall awareness increased fastest for reptiles and slowest for amphibians. Among languages, overall species awareness increased fastest for Japanese and slowest for Chinese and German users. Although awareness of species as a whole increased and was significantly higher for traded species, from January 2016 through January 2020, change in awareness appeared not to be strongly related to whether the species is traded or is a pollinator. As a data source for public biodiversity awareness, the SAI could be integrated into the Conservation International Biodiversity Engagement Indicator.


El Índice de Sensibilización de Especie como Medida de Culturomia de la Conservación para la Sensibilización Pública por la Biodiversidad Resumen Aunque las amenazas a la biodiversidad mundial son bien conocidas, reducir las tasas actuales de pérdida de la biodiversidad todavía es un desafío. Los objetivos de Aichi establecieron 20 metas para las cuales debe actuar la comunidad internacional para aliviar la declinación de la biodiversidad. Una de estas metas (Objetivo 1) busca sensibilizar al público sobre la importancia de la biodiversidad. Aunque los indicadores convencionales del Objetivo 1 tienen una baja cobertura espacial y temporal, las medidas de culturomia para la conservación muestran cómo la sensibilización por la biodiversidad puede cuantificarse a escala global. Seguimos los métodos utilizados para el Índice del Planeta Viviente para diseñar un índice de sensibilización de especie (ISE) para medir el cambio en la sensibilización por una especie con base en las vistas en Wikipedia. Calculamos este índice a nivel de página para 41,197 especies incluidas en las listas de la Unión Internacional para la Conservación de la Naturaleza (UICN) en diez diferentes idiomas en Wikipedia y más de 2 mil millones de vistas entre el 1 de julio de 2015 y el 30 de marzo de 2020. Los índices de arranque para el ISE a nivel de página mostraron que la sensibilización general por la biodiversidad incrementó ligeramente con el tiempo, aunque hubo diferencia entre las clasificaciones taxonómicas y los idiomas. Entre las clasificaciones taxonómicas, la sensibilización general incrementó más rápido para los reptiles y más lento para los anfibios. Entre los idiomas, la sensibilización general por especie incrementó más rápido para los usuarios del japonés y más lento para los usuarios del chino y el alemán. Aunque la sensibilización por las especies en su totalidad incrementó y fue significativamente más alta para las especies comercializadas, entre enero de 2016 y enero de 2020 el cambio en la sensibilización pareció no estar relacionado fuertemente con si la especie es un polinizador o es comercializada. Como fuente de información para la sensibilización pública por la biodiversidad, el ISE podría ser integrado dentro del Indicador de Participación Internacional para la Conservación de la Biodiversidad.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales
4.
PLoS Biol ; 15(1): e2000942, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28081142

RESUMEN

Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.


Asunto(s)
Biodiversidad , Aves/fisiología , Internacionalidad , Especies Introducidas , Animales , Producto Interno Bruto , Especificidad de la Especie , Factores de Tiempo
5.
PLoS Comput Biol ; 14(3): e1005995, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29518076

RESUMEN

Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.


Asunto(s)
Quirópteros/fisiología , Ecolocación/fisiología , Monitoreo del Ambiente/métodos , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Quirópteros/clasificación , Biología Computacional , Ecolocación/clasificación , Especies en Peligro de Extinción , Redes Neurales de la Computación , Zoología
6.
Am Nat ; 187(2): E53-64, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26807755

RESUMEN

Emerging infectious diseases (EIDs), particularly zoonoses, represent a significant threat to global health. Emergence is often driven by anthropogenic activity (e.g., travel, land use change). Although disease emergence frameworks suggest multiple steps from initial zoonotic transmission to human-to-human spread, there have been few attempts to empirically model specific steps. We create a process-based framework to separate out components of individual emergence steps. We focus on early emergence and expand the first step, zoonotic transmission, into processes of generation of pathogen richness, transmission opportunity, and establishment, each with its own hypothesized drivers. Using this structure, we build a spatial empirical model of these drivers, taking bat viruses shared with humans as a case study. We show that drivers of both viral richness (host diversity and climatic variability) and transmission opportunity (human population density, bushmeat hunting, and livestock production) are associated with virus sharing between humans and bats. We also show spatial heterogeneity between the global patterns of these two processes, suggesting that high-priority locations for pathogen discovery and surveillance in wildlife may not necessarily coincide with those for public health intervention. Finally, we offer direction for future studies of zoonotic EIDs by highlighting the importance of the processes underlying their emergence.


Asunto(s)
Quirópteros , Enfermedades Transmisibles Emergentes/epidemiología , Virosis/epidemiología , Zoonosis/epidemiología , Crianza de Animales Domésticos , Animales , Biodiversidad , Clima , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Humanos , Modelos Biológicos , Densidad de Población , Virosis/transmisión , Virosis/virología , Zoonosis/transmisión , Zoonosis/virología
7.
Nature ; 468(7324): 647-52, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21124449

RESUMEN

Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.


Asunto(s)
Biodiversidad , Enfermedades Transmisibles/transmisión , Animales , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Orthohantavirus/fisiología , Humanos , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , Especificidad de la Especie , Zoonosis/epidemiología , Zoonosis/transmisión
9.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25165765

RESUMEN

Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size-complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen-worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size-complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity.


Asunto(s)
Hormigas/fisiología , Conducta Animal , Conducta Social , Animales , Conducta Apetitiva , Evolución Biológica , Filogenia , Densidad de Población
10.
Nature ; 451(7181): 990-3, 2008 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-18288193

RESUMEN

Emerging infectious diseases (EIDs) are a significant burden on global economies and public health. Their emergence is thought to be driven largely by socio-economic, environmental and ecological factors, but no comparative study has explicitly analysed these linkages to understand global temporal and spatial patterns of EIDs. Here we analyse a database of 335 EID 'events' (origins of EIDs) between 1940 and 2004, and demonstrate non-random global patterns. EID events have risen significantly over time after controlling for reporting bias, with their peak incidence (in the 1980s) concomitant with the HIV pandemic. EID events are dominated by zoonoses (60.3% of EIDs): the majority of these (71.8%) originate in wildlife (for example, severe acute respiratory virus, Ebola virus), and are increasing significantly over time. We find that 54.3% of EID events are caused by bacteria or rickettsia, reflecting a large number of drug-resistant microbes in our database. Our results confirm that EID origins are significantly correlated with socio-economic, environmental and ecological factors, and provide a basis for identifying regions where new EIDs are most likely to originate (emerging disease 'hotspots'). They also reveal a substantial risk of wildlife zoonotic and vector-borne EIDs originating at lower latitudes where reporting effort is low. We conclude that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Animales , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Bases de Datos Factuales , Farmacorresistencia Microbiana , Ambiente , Geografía , Humanos , Incidencia , Riesgo , Factores Socioeconómicos , Zoonosis/epidemiología , Zoonosis/microbiología , Zoonosis/transmisión , Zoonosis/virología
11.
Nat Med ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198710

RESUMEN

Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of 'Lassa-X'-a hypothetical pandemic Lassa virus variant-and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7 million (95% uncertainty interval: 2.1-3.4 million) Lassa virus infections annually, resulting over 10 years in 2.0 million (793,800-3.9 million) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified 'endemic' districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1 million ($8.2-$39.0 million) in lost DALY value and $128.2 million ($67.2-$231.9 million) in societal costs (2021 international dollars ($)). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2 million DALYs within 2 years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.

12.
medRxiv ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38978680

RESUMEN

Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of "Lassa-X" - a hypothetical pandemic Lassa virus variant - and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7M (95% uncertainty interval: 2.1M-3.4M) Lassa virus infections annually, resulting over ten years in 2.0M (793.8K-3.9M) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified "endemic" districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1M ($8.2M-$39.0M) in lost DALY value and $128.2M ($67.2M-$231.9M) in societal costs (International dollars 2021). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2M DALYs within two years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease, and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.

13.
Nature ; 446(7135): 507-12, 2007 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-17392779

RESUMEN

Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic 'fuses' leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today's mammals.


Asunto(s)
Evolución Biológica , Mamíferos/clasificación , Mamíferos/fisiología , Animales , Dinosaurios/clasificación , Dinosaurios/fisiología , Extinción Biológica , Fósiles , Especiación Genética , Historia Antigua , Mamíferos/genética , Modelos Biológicos , Filogenia , Factores de Tiempo
14.
PLoS Negl Trop Dis ; 17(7): e0011450, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37450491

RESUMEN

Anthropogenic land-use change, such as deforestation and urban development, can affect the emergence and re-emergence of mosquito-borne diseases, e.g., dengue and malaria, by creating more favourable vector habitats. There has been a limited assessment of how mosquito vectors respond to land-use changes, including differential species responses, and the dynamic nature of these responses. Improved understanding could help design effective disease control strategies. We compiled an extensive dataset of 10,244 Aedes and Anopheles mosquito abundance records across multiple land-use types at 632 sites in Latin America and the Caribbean. Using a Bayesian mixed effects modelling framework to account for between-study differences, we compared spatial differences in the abundance and species richness of mosquitoes across multiple land-use types, including agricultural and urban areas. Overall, we found that mosquito responses to anthropogenic land-use change were highly inconsistent, with pronounced responses observed at the genus- and species levels. There were strong declines in Aedes (-26%) and Anopheles (-35%) species richness in urban areas, however certain species such as Aedes aegypti, thrived in response to anthropogenic disturbance. When abundance records were coupled with remotely sensed forest loss data, we detected a strong positive response of dominant and secondary malaria vectors to recent deforestation. This highlights the importance of the temporal dynamics of land-use change in driving disease risk and the value of large synthetic datasets for understanding changing disease risk with environmental change.


Asunto(s)
Aedes , Anopheles , Malaria , Animales , Mosquitos Vectores , América Latina , Teorema de Bayes , Aedes/fisiología , Anopheles/fisiología , Región del Caribe
15.
PLoS Negl Trop Dis ; 17(1): e0010772, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689474

RESUMEN

Rodents, a diverse, globally distributed and ecologically important order of mammals are nevertheless important reservoirs of known and novel zoonotic pathogens. Ongoing anthropogenic land use change is altering these species' abundance and distribution, which among zoonotic host species may increase the risk of zoonoses spillover events. A better understanding of the current distribution of rodent species is required to guide attempts to mitigate against potentially increased zoonotic disease hazard and risk. However, available species distribution and host-pathogen association datasets (e.g. IUCN, GBIF, CLOVER) are often taxonomically and spatially biased. Here, we synthesise data from West Africa from 127 rodent trapping studies, published between 1964-2022, as an additional source of information to characterise the range and presence of rodent species and identify the subgroup of species that are potential or known pathogen hosts. We identify that these rodent trapping studies, although biased towards human dominated landscapes across West Africa, can usefully complement current rodent species distribution datasets and we calculate the discrepancies between these datasets. For five regionally important zoonotic pathogens (Arenaviridae spp., Borrelia spp., Lassa mammarenavirus, Leptospira spp. and Toxoplasma gondii), we identify host-pathogen associations that have not been previously reported in host-association datasets. Finally, for these five pathogen groups, we find that the proportion of a rodent hosts range that have been sampled remains small with geographic clustering. A priority should be to sample rodent hosts across a greater geographic range to better characterise current and future risk of zoonotic spillover events. In the interim, studies of spatial pathogen risk informed by rodent distributions must incorporate a measure of the current sampling biases. The current synthesis of contextually rich rodent trapping data enriches available information from IUCN, GBIF and CLOVER which can support a more complete understanding of the hazard of zoonotic spillover events.


Asunto(s)
Roedores , Animales , Humanos , Fuentes de Información , Zoonosis/epidemiología , Mamíferos , Especificidad del Huésped
16.
GigaByte ; 2023: gigabyte100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090598

RESUMEN

Rodents, a globally distributed and ecologically important mammalian order, serve as hosts for various zoonotic pathogens. However, sampling of rodents and their pathogens suffers from taxonomic and spatial biases. This affects consolidated databases, such as IUCN and GBIF, limiting inference regarding the spillover hazard of zoonotic pathogens into human populations. Here, we synthesised data from 127 rodent trapping studies conducted in 14 West African countries between 1964 and 2022. We combined occurrence data with pathogen screening results to produce a dataset containing detection/non-detection data for 65,628 individual small mammals identified to the species level from at least 1,611 trapping sites. We also included 32 microorganisms, identified to the species or genus levels, that are known or potential pathogens. The dataset is formatted to Darwin Core Standard with associated metadata. This dataset can mitigate spatial and taxonomic biases of current databases, improving understanding of rodent-associated zoonotic pathogen spillover across West Africa.

17.
Biol Lett ; 8(6): 904-6, 2012 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22915630

RESUMEN

The symposium 'What is Macroecology?' was held in London on 20 June 2012. The event was the inaugural meeting of the Macroecology Special Interest Group of the British Ecological Society and was attended by nearly 100 scientists from 11 countries. The meeting reviewed the recent development of the macroecological agenda. The key themes that emerged were a shift towards more explicit modelling of ecological processes, a growing synthesis across systems and scales, and new opportunities to apply macroecological concepts in other research fields.


Asunto(s)
Ecología/métodos , Ecología/tendencias , Ecosistema , Modelos Biológicos , Geografía , Factores de Tiempo
18.
Nature ; 444(7115): 93-6, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17080090

RESUMEN

Global conservation strategies commonly assume that different taxonomic groups show congruent geographical patterns of diversity, and that the distribution of extinction-prone species in one group can therefore act as a surrogate for vulnerable species in other groups when conservation decisions are being made. The validity of these assumptions remains unclear, however, because previous tests have been limited in both geographical and taxonomic extent. Here we use a database on the global distribution of 19,349 living bird, mammal and amphibian species to show that, although the distribution of overall species richness is very similar among these groups, congruence in the distribution of rare and threatened species is markedly lower. Congruence is especially low among the very rarest species. Cross-taxon congruence is also highly scale dependent, being particularly low at the finer spatial resolutions relevant to real protected areas. 'Hotspots' of rarity and threat are therefore largely non-overlapping across groups, as are areas chosen to maximize species complementarity. Overall, our results indicate that 'silver-bullet' conservation strategies alone will not deliver efficient conservation solutions. Instead, priority areas for biodiversity conservation must be based on high-resolution data from multiple taxa.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Vertebrados/fisiología , Animales , Extinción Biológica , Dinámica Poblacional , Tamaño de la Muestra , Vertebrados/clasificación
19.
PLoS Negl Trop Dis ; 16(2): e0010218, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192626

RESUMEN

Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.


Asunto(s)
Culex , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Teorema de Bayes , Encefalitis Japonesa/epidemiología , India/epidemiología , Mosquitos Vectores , Estaciones del Año
20.
Lancet Planet Health ; 6(9): e739-e748, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36087604

RESUMEN

BACKGROUND: Environmental degradation facilitates the emergence of vector-borne diseases, such as malaria, through changes in the ecological landscape that increase human-vector contacts and that expand vector habitats. However, the modifying effects of environmental degradation on climate-disease relationships have not been well explored. Here, we investigate the rapid re-emergence of malaria in a transmission hotspot in southern Venezuela and explore the synergistic effects of environmental degradation, specifically gold-mining activity, and climate variation. METHODS: In this spatiotemporal modelling study of the 46 parishes of the state of Bolívar, southeast Venezuela, we used data from the Venezuelan Ministry of Health including population data and monthly cases of Plasmodium falciparum malaria and Plasmodium vivax malaria between 1996 and 2016. We estimated mean precipitation and temperature using the ERA5-Land dataset and used monthly anomalies in sea-surface temperature as an indicator of El Niño events between 1996 and 2016. The location of suspected mining sites in Bolívar in 2009, 2017, and 2018 were sourced from the Amazon Geo-Referenced Socio-Environmental Information Network. We estimated measures of cumulative forest loss and urban development by km2 using annual land cover maps from the European Space Agency Climate Change Initiative between 1996 and 2016. We modelled monthly cases of P falciparum and P vivax malaria using a Bayesian hierarchical mixed model framework. We quantified the variation explained by mining activity before exploring the modifying effects of environmental degradation on climate-malaria relationships. FINDINGS: We observed a 27% reduction in the additional unexplained spatial variation in incidence of P falciparum malaria and a 23% reduction in P vivax malaria when mining was included in our models. The effect of temperature on malaria was greater in high mining areas than low mining areas, and the P falciparum malaria effect size at temperatures of 26·5°C (2·4 cases per 1000 people [95% CI 1·78-3·06]) was twice as high as the effect in low mining areas (1 case per 1000 people [0·68-1·49]). INTERPRETATION: We show that mining activity in southern Venezuela is associated with hotspots of malaria transmission. Increased temperatures exacerbated malaria transmission in mining areas, highlighting the need to consider how environmental degradation modulates climate effect on disease risk, which is especially important in areas subjected to rapidly rising temperatures and land-use change globally. Our findings have implications for the progress towards malaria elimination in the Latin American region. Our findings are also important for effectively targeting timely treatment programmes and vector-control activities in mining areas with high rates of malaria transmission. FUNDING: Biotechnology and Biological Sciences Research Council, Royal Society, US National Institutes of Health, and Global Challenges Research Fund. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Teorema de Bayes , Humanos , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Análisis Espacio-Temporal , Estados Unidos , Venezuela/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA