Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 31(3): 563-75, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139357

RESUMEN

In fission yeast, the stress-activated MAP kinase, Sty1, is activated via phosphorylation upon exposure to stress and orchestrates an appropriate response. Its activity is attenuated by either serine/threonine PP2C or tyrosine phosphatases. Here, we found that the PP2C phosphatase, Ptc4, plays an important role in inactivating Sty1 specifically upon oxidative stress. Sty1 activity remains high in a ptc4 deletion mutant upon H(2)O(2) but not under other types of stress. Surprisingly, Ptc4 localizes to the mitochondria and is targeted there by an N-terminal mitochondrial targeting sequence (MTS), which is cleaved upon import. A fraction of Sty1 also localizes to the mitochondria suggesting that Ptc4 attenuates the activity of a mitochondrial pool of this MAPK. Cleavage of the Ptc4 MTS is greatly reduced specifically upon H(2)O(2), resulting in the full-length form of the phosphatase; this displays a stronger interaction with Sty1, thus suggesting a novel mechanism by which the negative regulation of MAPK signalling is controlled and providing an explanation for the oxidative stress-specific nature of the regulation of Sty1 by Ptc4.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Activación Enzimática , Estrés Oxidativo , Fosforilación , Proteolisis
2.
PLoS Genet ; 6(12): e1001258, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203491

RESUMEN

The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K)::Ink4a⁻/⁻) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In contrast to 7/21 of the Nras(Q61K)::Ink4a⁻/⁻ mice, only 1/21 mice expressing mutant ATF2 in melanocytes developed melanoma. Gene expression profiling identified higher MITF expression in primary melanocytes expressing transcriptionally inactive ATF2. MITF downregulation by ATF2 was confirmed in the skin of Atf2⁻/⁻ mice, in primary human melanocytes, and in 50% of human melanoma cell lines. Inhibition of MITF transcription by MITF was shown to be mediated by ATF2-JunB-dependent suppression of SOX10 transcription. Remarkably, oncogenic BRAF (V600E)-dependent focus formation of melanocytes on soft agar was inhibited by ATF2 knockdown and partially rescued upon shMITF co-expression. On melanoma tissue microarrays, a high nuclear ATF2 to MITF ratio in primary specimens was associated with metastatic disease and poor prognosis. Our findings establish the importance of transcriptionally active ATF2 in melanoma development through fine-tuning of MITF expression.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Activador 2/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo , Femenino , Humanos , Masculino , Melanocitos/metabolismo , Melanoma/genética , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción Asociado a Microftalmía/metabolismo , Piel/metabolismo , Piel/patología
3.
Cancer Cell ; 2(3): 229-41, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12242155

RESUMEN

Expression of the Kaposi's sarcoma-associated herpesvirus (KSHV) cyclin D homolog, K cyclin, is thought to contribute to viral oncogenesis. We show that K cyclin expression in primary cells sensitizes to apoptosis and induces growth arrest, both of which are dependent on p53 but independent of E2F1 or p19(ARF). DNA synthesis, but not cytokinesis, continues in K cyclin-expressing cells, leading to multinucleation and polyploidy. Such polyploid cells exhibit pronounced centrosome amplification and consequent aneuploidy. Our data suggest that K cyclin expression leads to cytokinesis defects and polyploidy, which activates p53. However, in the absence of p53, such cells survive and expand as an aneuploid population. Corroborating these findings, in vivo Emu; K cyclin expression cooperates with p53 loss in the induction of lymphomas.


Asunto(s)
Apoptosis/fisiología , Ciclinas/biosíntesis , Ciclinas/genética , Genes p53/fisiología , Herpesvirus Humano 8/genética , Animales , División Celular/genética , División Celular/fisiología , Células Cultivadas , Centrosoma/patología , Embrión de Mamíferos , Fibroblastos/citología , Fibroblastos/patología , Fibroblastos/fisiología , Herpesvirus Humano 8/metabolismo , Humanos , Linfoma/genética , Linfoma/metabolismo , Linfoma/patología , Ratones , Ratones Transgénicos , Poliploidía , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Transducción Genética
4.
Proc Natl Acad Sci U S A ; 105(5): 1674-9, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18227516

RESUMEN

Activating transcription factor 2 (ATF2) regulates transcription in response to stress and growth factor stimuli. Here, we use a mouse model in which ATF2 was selectively deleted in keratinocytes. Crossing the conditionally expressed ATF2 mutant with K14-Cre mice (K14.ATF2(f/f)) resulted in selective expression of mutant ATF2 within the basal layer of the epidermis. When subjected to a two-stage skin carcinogenesis protocol [7,12-dimethylbenz[a]anthracene/phorbol 12-tetradecanoate 13-acetate (DMBA/TPA)], K14.ATF2(f/f) mice showed significant increases in both the incidence and prevalence of papilloma development compared with the WT ATF2 mice. Consistent with these findings, keratinocytes of K14.ATF2(f/f) mice exhibit greater anchorage-independent growth compared with ATF2 WT keratinocytes. Papillomas of K14.ATF2(f/f) mice exhibit reduced expression of presenilin1, which is associated with enhanced beta-catenin and cyclin D1, and reduced Notch1 expression. Significantly, a reduction of nuclear ATF2 and increased beta-catenin expression were seen in samples of squamous and basal cell carcinoma, as opposed to normal skin. Our data reveal that loss of ATF2 transcriptional activity serves to promote skin tumor formation, thereby indicating a suppressor activity of ATF2 in skin tumor formation.


Asunto(s)
Factor de Transcripción Activador 2/fisiología , Papiloma/genética , Neoplasias Cutáneas/genética , Proteínas Supresoras de Tumor/fisiología , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Factor de Transcripción Activador 2/análisis , Factor de Transcripción Activador 2/genética , Animales , Apoptosis , Carcinógenos/toxicidad , Proliferación Celular , Ciclina D1/metabolismo , ADN/biosíntesis , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones , Ratones Noqueados , Papiloma/inducido químicamente , Papiloma/patología , Presenilina-1/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptor Notch1/metabolismo , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol/toxicidad , Análisis de Matrices Tisulares , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/genética , beta Catenina/metabolismo
5.
J Cell Biol ; 168(4): 553-60, 2005 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-15716376

RESUMEN

E2F/DP complexes were originally identified as potent transcriptional activators required for cell proliferation. However, recent studies revised this notion by showing that inactivation of total E2F/DP activity by dominant-negative forms of E2F or DP does not prevent cellular proliferation, but rather abolishes tumor suppression pathways, such as cellular senescence. These observations suggest that blockage of total E2F/DP activity may increase the risk of cancer. Here, we provide evidence that depletion of DP by RNA interference, but not overexpression of dominant-negative form of E2F, efficiently reduces endogenous E2F/DP activity in human primary cells. Reduction of total E2F/DP activity results in a dramatic decrease in expression of many E2F target genes and causes a senescence-like cell cycle arrest. Importantly, similar results were observed in human cancer cells lacking functional p53 and pRB family proteins. These findings reveal that E2F/DP activity is indeed essential for cell proliferation and its reduction immediately provokes a senescence-like cell cycle arrest.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Celular/fisiología , Proliferación Celular , Inmunoprecipitación de Cromatina , Factores de Transcripción E2F , Ensayo de Cambio de Movilidad Electroforética , Células HeLa , Humanos , Interferencia de ARN/fisiología , Proteína de Retinoblastoma/deficiencia , Transducción de Señal/fisiología , Factor de Transcripción DP1 , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/deficiencia
6.
Cell Mol Gastroenterol Hepatol ; 10(1): 23-42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31958521

RESUMEN

BACKGROUND & AIMS: Activation factor-1 transcription factor family members activating transcription factors 2 and 7 (ATF2 and ATF7) have highly redundant functions owing to highly homologous DNA binding sites. Their role in intestinal epithelial homeostasis and repair is unknown. Here, we assessed the role of these proteins in these conditions in an intestine-specific mouse model. METHODS: We performed in vivo and ex vivo experiments using Villin-CreERT2Atf2fl/flAtf7ko/ko mice. We investigated the effects of intestinal epithelium-specific deletion of the Atf2 DNA binding region in Atf7-/- mice on cellular proliferation, differentiation, apoptosis, and epithelial barrier function under homeostatic conditions. Subsequently, we exposed mice to 2% dextran sulfate sodium (DSS) for 7 days and 12 Gy whole-body irradiation and assessed the response to epithelial damage. RESULTS: Activating phosphorylation of ATF2 and ATF7 was detected mainly in the crypts of the small intestine and the lower crypt region of the colonic epithelium. Under homeostatic conditions, no major phenotypic changes were detectable in the intestine of ATF mutant mice. However, on DSS exposure or whole-body irradiation, the intestinal epithelium showed a clearly impaired regenerative response. Mutant mice developed severe ulceration and inflammation associated with increased epithelial apoptosis on DSS exposure and were less able to regenerate colonic crypts on irradiation. In vitro, organoids derived from double-mutant epithelium had a growth disadvantage compared with wild-type organoids, impaired wound healing capacity in scratch assay, and increased sensitivity to tumor necrosis factor-α-induced damage. CONCLUSIONS: ATF2 and ATF7 are dispensable for epithelial homeostasis, but are required to maintain epithelial regenerative capacity and protect against cell death during intestinal epithelial damage and repair.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Factores de Transcripción Activadores/metabolismo , Colitis Ulcerosa/patología , Mucosa Intestinal/patología , Regeneración , Factor de Transcripción Activador 2/genética , Factores de Transcripción Activadores/genética , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colitis Ulcerosa/inducido químicamente , Colon/efectos de los fármacos , Colon/patología , Colon/efectos de la radiación , Sulfato de Dextran/administración & dosificación , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de la radiación , Ratones , Ratones Transgénicos , Organoides , Cultivo Primario de Células , Irradiación Corporal Total
7.
Eukaryot Cell ; 7(6): 926-37, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18441123

RESUMEN

We undertook a screen to isolate determinants of drug resistance in fission yeast and identified two genes that, when mutated, result in sensitivity to a range of structurally unrelated compounds, some of them commonly used in the clinic. One gene, rav1, encodes the homologue of a budding yeast protein which regulates the assembly of the vacuolar ATPase. The second gene, lac1, encodes a homologue of genes that are required for ceramide synthesis. Both mutants are sensitive to the chemotherapeutic agent doxorubicin, and using the naturally fluorescent properties of this compound, we found that both rav1 and lac1 mutations result in an increased accumulation of the drug in cells. The multidrug-sensitive phenotype of rav1 mutants can be rescued by up-regulation of the lag1 gene which encodes a homologue of lac1, whereas overexpression of either lac1 or lag1 confers multidrug resistance on wild-type cells. These data suggest that changing the amount of ceramide synthase activity in cells can influence innate drug resistance. The function of Rav1 appears to be conserved, as we show that SpRav1 is part of a RAVE-like complex in fission yeast and that loss of rav1 results in defects in vacuolar (H(+))-ATPase activity. Thus, we conclude that loss of normal V-ATPase function results in an increased sensitivity of Schizosaccharomyces pombe cells to drugs. The rav1 and lac1 genes are conserved in both higher eukaryotes and various pathogenic fungi. Thus, our data could provide the basis for strategies to sensitize tumor cells or drug-resistant pathogenic fungi to drugs.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Doxorrubicina/farmacología , Regulación Fúngica de la Expresión Génica , Calor , Mutación , Schizosaccharomyces/citología , Esteroles/análisis , ATPasas de Translocación de Protón Vacuolares/genética
8.
Nucleic Acids Res ; 35(4): 1312-21, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17267404

RESUMEN

The transcriptional activation of CHOP (a CCAAT/enhancer-binding protein-related gene) by amino acid deprivation involves the activating transcription factor 2 (ATF2) and the activating transcription factor 4 (ATF4) binding the amino acid response element (AARE) within the promoter. Using a chromatin immunoprecipitation approach, we report that in vivo binding of phospho-ATF2 and ATF4 to CHOP AARE are associated with acetylation of histones H4 and H2B in response to amino acid starvation. A time course analysis reveals that ATF2 phosphorylation precedes histone acetylation, ATF4 binding and the increase in CHOP mRNA. We also show that ATF4 binding and histone acetylation are two independent events that are required for the CHOP induction upon amino acid starvation. Using ATF2-deficient mouse embryonic fibroblasts, we demonstrate that ATF2 is essential in the acetylation of histone H4 and H2B in vivo. The role of ATF2 on histone H4 acetylation is dependent on its binding to the AARE and can be extended to other amino acid regulated genes. Thus, ATF2 is involved in promoting the modification of the chromatin structure to enhance the transcription of a number of amino acid-regulated genes.


Asunto(s)
Factor de Transcripción Activador 2/fisiología , Aminoácidos/metabolismo , Histonas/metabolismo , Factor de Transcripción CHOP/genética , Activación Transcripcional , Acetilación , Factor de Transcripción Activador 4/metabolismo , Animales , Células Cultivadas , Ratones , Fosforilación , Elementos de Respuesta , Factor de Transcripción CHOP/biosíntesis
9.
Curr Biol ; 14(24): 2283-8, 2004 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-15620657

RESUMEN

Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved dityrosine motif proximal to the terminal nonconserved amino acid. In S. cerevisiae, high molecular weight adducts can be formed in vivo from Hub1, but the structure of these adducts is not known, and they could be either covalent or noncovalent. The budding yeast HUB1 gene is not essential, but Delta hub1 mutants display defects in mating. Here, we report that fission yeast hub1 is an essential gene, whose loss results in cell cycle defects and inefficient pre-mRNA splicing. A screen for Hub1 interactors identified Snu66, a component of the U4/U6.U5 tri-snRNP splicing complex. Furthermore, overexpression of Snu66 suppresses the lethality of a hub1ts mutant. In cells lacking functional hub1, the nuclear localization of Snu66 is disrupted, suggesting that an important role for Hub1 is the correct subcellular targeting of Snu66, although our data suggest that Hub1 is likely to perform other roles in splicing as well.


Asunto(s)
Empalme del ARN/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclo Celular/fisiología , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Genes Esenciales/fisiología , Microscopía Fluorescente , Mutación/genética , Oligonucleótidos , Transporte de Proteínas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinas
10.
Mol Biol Cell ; 13(9): 2977-89, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12221110

RESUMEN

In Schizosaccharomyces pombe, the Sty1 mitogen-activated protein kinase and the Atf1 transcription factor control transcriptional induction in response to elevated salt concentrations. Herein, we demonstrate that two repressors, Tup11 and Tup12, and the Prr1 transcription factor also function in the response to salt shock. We find that deletion of both tup genes together results in hypersensitivity to elevated cation concentrations (K(+) and Ca(2+)) and we identify cta3(+), which encodes an intracellular cation transporter, as a novel stress gene whose expression is positively controlled by the Sty1 pathway and negatively regulated by Tup repressors. The expression of cta3(+) is maintained at low levels by the Tup repressors, and relief from repression requires the Sty1, Atf1, and Prr1. Prr1 is also required for KCl-mediated induction of several other Sty1-dependent genes such as gpx1(+) and ctt1(+). Surprisingly, the KCl-mediated induction of cta3(+) expression occurs independently of Sty1 in a tup11Delta tup12Delta mutant and so the Tup repressors link induction to the Sty1 pathway. We also report that in contrast to a number of other Sty1- and Atf1-dependent genes, the expression of cta3(+) is induced only by high salt concentrations. However, in the absence of the Tup repressors this specificity is lost and a range of stresses induces cta3(+) expression.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Sales (Química)/farmacología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Transporte Biológico , Cationes , Relación Dosis-Respuesta a Droga , Regulación Fúngica de la Expresión Génica , Iones , Modelos Biológicos , Fenotipo , Plásmidos/metabolismo , Potasio/metabolismo , Pruebas de Precipitina , Regiones Promotoras Genéticas , Unión Proteica , ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , beta-Galactosidasa/metabolismo
11.
Mol Biol Cell ; 13(3): 805-16, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11907263

RESUMEN

The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H(2)O(2) in the fission yeast Schizosaccharomyces pombe. We find that H(2)O(2) activates the Sty1 pathway in a dose-dependent manner via at least two sensing mechanisms. At relatively low levels of H(2)O(2), a two component-signaling pathway, which feeds into either of the two stress-activated mitogen-activated protein kinase kinase kinases Wak1 or Win1, regulates Sty1 phosphorylation. In contrast, at high levels of H(2)O(2), Sty1 activation is controlled predominantly by a two-component independent mechanism and requires the function of both Wak1 and Win1. Individual transcription factors were also found to function within a limited range of H(2)O(2) concentrations. Pap1 activates target genes primarily in response to low levels of H(2)O(2), whereas Atf1 primarily controls the transcriptional response to high concentrations of H(2)O(2). Our results demonstrate that S. pombe uses a combination of stress-responsive regulatory proteins to gauge and effect the appropriate transcriptional response to increasing concentrations of H(2)O(2).


Asunto(s)
Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Transcripción Genética/efectos de los fármacos , Factor de Transcripción Activador 1 , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Modelos Biológicos , Oxidantes/metabolismo , Oxidantes/farmacología , Estrés Oxidativo , Proteínas Asociadas a Pancreatitis , Peroxidasas/genética , Fosforilación , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
12.
Mol Biol Cell ; 14(1): 214-29, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12529438

RESUMEN

We explored transcriptional responses of the fission yeast Schizosaccharomyces pombe to various environmental stresses. DNA microarrays were used to characterize changes in expression profiles of all known and predicted genes in response to five stress conditions: oxidative stress caused by hydrogen peroxide, heavy metal stress caused by cadmium, heat shock caused by temperature increase to 39 degrees C, osmotic stress caused by sorbitol, and DNA damage caused by the alkylating agent methylmethane sulfonate. We define a core environmental stress response (CESR) common to all, or most, stresses. There was a substantial overlap between CESR genes of fission yeast and the genes of budding yeast that are stereotypically regulated during stress. CESR genes were controlled primarily by the stress-activated mitogen-activated protein kinase Sty1p and the transcription factor Atf1p. S. pombe also activated gene expression programs more specialized for a given stress or a subset of stresses. In general, these "stress-specific" responses were less dependent on the Sty1p mitogen-activated protein kinase pathway and may involve specific regulatory factors. Promoter motifs associated with some of the groups of coregulated genes were identified. We compare and contrast global regulation of stress genes in fission and budding yeasts and discuss evolutionary implications.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Estrés Oxidativo/genética , Schizosaccharomyces/genética , Alquilantes/metabolismo , Cadmio/metabolismo , Calor , Peróxido de Hidrógeno/metabolismo , Presión Osmótica , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
13.
Cancer Res ; 64(2): 581-9, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14744772

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cyclin D homolog, K cyclin, that is thought to promote viral oncogenesis. However, expression of K cyclin in cultured cells not only triggers cell cycle progression but also engages the p53 tumor suppressor pathway, which probably restricts the oncogenic potential of K cyclin. Therefore, to assess the tumorigenic properties of K cyclin in vivo, we transgenically targeted expression of K cyclin to the B and T lymphocyte compartments via the E micro promoter/enhancer. Around 17% of E micro -K cyclin animals develop lymphoma by 9 months of age, and all such lymphomas exhibit loss of p53. A critical role of p53 in suppressing K cyclin-induced lymphomagenesis was confirmed by the greatly accelerated onset of B and T lymphomagenesis in all E micro -K cyclin/p53(-/-) mice. However, absence of p53 did not appear to accelerate K cyclin-induced lymphomagenesis by averting apoptosis: E micro -K cyclin/p53(-/-) end-stage lymphomas contained abundant apoptotic cells, and transgenic E micro -K cyclin/p53(-/-) lymphocytes in vitro were not measurably protected from DNA damage-induced apoptosis compared with E micro -K cyclin/p53(wt) cells. Notably, whereas aneuploidy was frequently evident in pre-lymphomatous tissues, end-stage E micro -K cyclin/p53(-/-) tumors showed a near-diploid DNA content with no aberrant centrosome numbers. Nonetheless, such tumor cells did harbor more restricted genomic alterations, such as single-copy chromosome losses or gains or high-level amplifications. Together, our data support a model in which K cyclin-induced genome instability arises early in the pre-tumorigenic lymphocyte population and that loss of p53 licenses subsequent expansion of tumorigenic clones.


Asunto(s)
Ciclinas/fisiología , Genes p53 , Herpesvirus Humano 8/patogenicidad , Linfangiogénesis/fisiología , Proteínas Virales/fisiología , Animales , Línea Celular Tumoral , Cruzamientos Genéticos , Ciclinas/genética , Cartilla de ADN , Femenino , Genotipo , Cinética , Linfangiogénesis/genética , Linfoma de Células B/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Plásmidos , Reacción en Cadena de la Polimerasa , Linfocitos T/efectos de la radiación , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteínas Virales/genética
14.
Cell Rep ; 9(4): 1361-74, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25456131

RESUMEN

JNK and p38 phosphorylate a diverse set of substrates and, consequently, can act in a context-dependent manner to either promote or inhibit tumor growth. Elucidating the functions of specific substrates of JNK and p38 is therefore critical for our understanding of these kinases in cancer. ATF2 is a phosphorylation-dependent transcription factor and substrate of both JNK and p38. Here, we show ATF2 suppresses tumor formation in an orthotopic model of liver cancer and cellular transformation in vitro. Furthermore, we find that suppression of tumorigenesis by JNK requires ATF2. We identify a transcriptional program activated by JNK via ATF2 and provide examples of JNK- and ATF2-dependent genes that block cellular transformation. Significantly, we also show that ATF2-dependent gene expression is frequently downregulated in human cancers, indicating that amelioration of JNK-ATF2-mediated suppression may be a common event during tumor development.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Regulación Neoplásica de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factor de Transcripción Activador 2/química , Factor de Transcripción Activador 2/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Fosforilación , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas ras/metabolismo
15.
PLoS One ; 6(4): e19090, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21533046

RESUMEN

The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.


Asunto(s)
Factor de Transcripción Activador 2/fisiología , Embrión de Mamíferos/citología , Neuronas Motoras/patología , Cráneo/inervación , Factor de Transcripción Activador 2/genética , Animales , Axones , Tronco Encefálico/citología , Tronco Encefálico/embriología , Fosfatasas de Especificidad Dual/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-jun/genética
16.
J Mol Biol ; 404(2): 183-201, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20875427

RESUMEN

In fission yeast, Sty1 and Gcn2 are important protein kinases that regulate gene expression in response to amino acid starvation. The translation factor subunit Int6/eIF3e promotes Sty1-dependent response by increasing the abundance of Atf1, a transcription factor targeted by Sty1. While Gcn2 promotes expression of amino acid biosynthesis enzymes, the mechanism and function of Sty1 activation and Int6/eIF3e involvement during this nutrient stress are not understood. Here we show that mutants lacking sty1(+) or gcn2(+) display reduced viabilities during histidine depletion stress in a manner suppressible by the antioxidant N-acetyl cysteine, suggesting that these protein kinases function to alleviate endogenous oxidative damage generated during nutrient starvation. Int6/eIF3e also promotes cell viability by a mechanism involving the stimulation of Sty1 response to oxidative damage. In further support of these observations, microarray data suggest that, during histidine starvation, int6Δ increases the duration of Sty1-activated gene expression linked to oxidative stress due to the initial attenuation of Sty1-dependent transcription. Moreover, loss of gcn2 induces the expression of a new set of genes not activated in wild-type cells starved for histidine. These genes encode heatshock proteins, redox enzymes, and proteins involved in mitochondrial maintenance, in agreement with the idea that oxidative stress is imposed on gcn2Δ cells. Furthermore, early Sty1 activation promotes rapid Gcn2 activation on histidine starvation. These results suggest that Gcn2, Sty1, and Int6/eIF3e are functionally integrated and cooperate to respond to oxidative stress generated during histidine starvation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Histidina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Factor de Transcripción Activador 1/genética , Factor de Transcripción Activador 1/metabolismo , Amitrol (Herbicida)/farmacología , Secuencia de Bases , ADN de Hongos/genética , Factor 3 de Iniciación Eucariótica/genética , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Biológicos , Mutación , Estrés Oxidativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética
17.
Genes Cancer ; 1(4): 316-330, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20740050

RESUMEN

The transcription factor ATF2 was previously shown to be an ATM substrate. Upon phosphorylation by ATM, ATF2 exhibits a transcription-independent function in the DNA damage response through localization to DNA repair foci and control of cell cycle arrest. To assess the physiological significance of this phosphorylation, we generated ATF2 mutant mice in which the ATM phosphoacceptor sites (S472/S480) were mutated (ATF2(KI)). ATF2(KI) mice are more sensitive to ionizing radiation (IR) than wild-type (ATF2 (WT)) mice: following IR, ATF2(KI) mice exhibited higher levels of apoptosis in the intestinal crypt cells and impaired hepatic steatosis. Molecular analysis identified impaired activation of the cell cycle regulatory protein p21(Cip/Waf1) in cells and tissues of IR-treated ATF2(KI) mice, which was p53 independent. Analysis of tumor development in p53(KO) crossed with ATF2(KI) mice indicated a marked decrease in amount of time required for tumor development. Further, when subjected to two-stage skin carcinogenesis process, ATF2(KI) mice developed skin tumors faster and with higher incidence, which also progressed to the more malignant carcinomas, compared with the control mice. Using 3 mouse models, we establish the importance of ATF2 phosphorylation by ATM in the acute cellular response to DNA damage and maintenance of genomic stability.

18.
Curr Biol ; 19(22): 1907-11, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19836238

RESUMEN

The Atf1 transcription factor is critical for directing stress-induced gene expression in fission yeast [1]. Upon exposure to stress, Atf1 is hyperphosphorylated by the mitogen-activated protein kinase (MAPK) Sty1 [2, 3], which results in its stabilization [4]. The resulting increase in Atf1 is vital for a robust response to certain stresses [4]. Here we investigated the mechanism by which phosphorylation stabilizes Atf1. We show that Atf1 is a target for the ubiquitin-proteasome system and that its degradation is dependent upon an SCF E3 ligase containing the F box protein Fbh1. Turnover of Atf1 requires an intact F box, but not DNA helicase activity of Fbh1. Accordingly, disruption of Fbh1 F box function suppresses phenotypes associated with loss of Atf1 phosphorylation. Atf1 and Fbh1 interact under basal conditions, but this binding is lost upon stress. In contrast, a version of Atf1 lacking all intact MAPK sites still interacts with Fbh1 upon stress, indicating that the association between the F box protein and substrate is disrupted by stress-induced phosphorylation. Most F box protein-substrate interactions described to date are mediated positively by phosphorylation [5]. Thus, our findings represent a novel means of regulating the interaction between an F box protein and its substrate. Moreover, Atf1 is the first target described in any organism for the Fbh1 F box protein.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , ADN Helicasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Estrés Fisiológico , Fosforilación , Unión Proteica
19.
J Biol Chem ; 284(36): 23989-94, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19584054

RESUMEN

Fission yeast Atf1 is a member of the ATF/CREB basic leucine zipper (bZIP) family of transcription factors with strong homology to mammalian ATF2. Atf1 regulates transcription in response to stress stimuli and also plays a role in controlling heterochromatin formation and recombination. However, its DNA binding independent role is poorly studied. Here, we report that Atf1 has a distinct role in regulating the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. We have identified atf1(+) as a dose-dependent suppressor of apc5-1, a mutation causing mitotic arrest. Remarkably, the suppression is not dependent upon the bZIP domain and is therefore independent of the ability of Atf1 to bind DNA. Interestingly, Atf1 physically binds the APC/C in vivo. Furthermore, we show that addition of purified Atf1 proteins into a cell-free system stimulates ubiquitylation of cyclin B and securin by the APC/C. These results reveal a novel role for Atf1 in cell cycle control through protein-protein interaction.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Transcripción Activador 1/genética , Ciclosoma-Complejo Promotor de la Anafase , Sistema Libre de Células/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Fosfoproteínas/genética , Recombinación Genética/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
J Biol Chem ; 283(15): 9945-56, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18252721

RESUMEN

The stress-induced expression of many fission yeast genes is dependent upon the Sty1 mitogen-activated protein kinase (MAPK) and Atf1 transcription factor. Atf1 is phosphorylated by Sty1 yet this phosphorylation is not required for stress-induced gene expression, suggesting another mechanism exists whereby Sty1 activates transcription. Here we show that Sty1 associates with Atf1-dependent genes and is recruited to both their promoters and coding regions. This occurs in response to various stress conditions coincident with the kinetics of the activation of Sty1. Association with promoters is not a consequence of increased nuclear accumulation of Sty1 nor does it require the phosphorylation of Atf1. However, recruitment is completely abolished in a mutant lacking Sty1 kinase activity. Both Atf1 and its binding partner Pcr1 are required for association of Sty1 with Atf1-dependent promoters, suggesting that this heterodimer must be intact for optimal recruitment of the MAPK. However, many Atf1-dependent genes are still expressed in a pcr1Delta mutant but with significantly delayed kinetics, thus providing an explanation for the relatively mild stress sensitivity displayed by pcr1Delta. Consistent with this delay, Sty1 and Atf1 cannot be detected at these promoters in this condition, suggesting that their association with chromatin is weak or transient in the absence of Pcr1.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Factores de Transcripción Activadores/metabolismo , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factor de Transcripción Activador 1/genética , Factores de Transcripción Activadores/genética , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Eliminación de Gen , Proteínas Quinasas Activadas por Mitógenos/genética , Sistemas de Lectura Abierta/fisiología , Fosfoproteínas/genética , Fosforilación , Regiones Promotoras Genéticas/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA