Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(3): 373-385, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36517243

RESUMEN

Cannabinoids modulate dopamine (DA) transmission and DA-related behavior, which has been thought to be mediated initially by activation of cannabinoid CB1 receptors (CB1Rs) on GABA neurons. However, there is no behavioral evidence supporting it. In contrast, here we report that CB1Rs are also expressed in a subset of DA neurons and functionally underlie cannabinoid action in male and female mice. RNAscope in situ hybridization (ISH) assays demonstrated CB1 mRNA in tyrosine hydroxylase (TH)-positive DA neurons in the ventral tegmental area (VTA) and glutamate decarboxylase 1 (GAD1)-positive GABA neurons. The CB1R-expressing DA neurons were located mainly in the middle portion of the VTA with the number of CB1-TH colocalization progressively decreasing from the medial to the lateral VTA. Triple-staining assays indicated CB1R mRNA colocalization with both TH and vesicular glutamate transporter 2 (VgluT2, a glutamate neuronal marker) in the medial VTA close to the midline of the brain. Optogenetic activation of this population of DA neurons was rewarding as assessed by optical intracranial self-stimulation. Δ9-tetrahydrocannabinol (Δ9-THC) or ACEA (a selective CB1R agonist) dose-dependently inhibited optical intracranial self-stimulation in DAT-Cre control mice, but not in conditional knockout mice with the CB1R gene absent in DA neurons. In addition, deletion of CB1Rs from DA neurons attenuated Δ9-THC-induced reduction in DA release in the NAc, locomotion, and anxiety. Together, these findings indicate that CB1Rs are expressed in a subset of DA neurons that corelease DA and glutamate, and functionally underlie cannabinoid modulation of DA release and DA-related behavior.SIGNIFICANCE STATEMENT Cannabinoids produce a series of psychoactive effects, such as aversion, anxiety, and locomotor inhibition in rodents. However, the cellular and receptor mechanisms underlying these actions are not fully understood. Here we report that CB1 receptors are expressed not only in GABA neurons but also in a subset of dopamine neurons, which are located mainly in the medial VTA close to the midline of the midbrain and corelease dopamine and glutamate. Optogenetic activation of these dopamine neurons is rewarding, which is dose-dependently inhibited by cannabinoids. Selective deletion of CB1 receptor from dopamine neurons blocked cannabinoid-induced aversion, hypoactivity, and anxiolytic effects. These findings demonstrate that dopaminergic CB1 receptors play an important role in mediating cannabinoid action.


Asunto(s)
Ansiolíticos , Cannabinoides , Femenino , Ratones , Masculino , Animales , Cannabinoides/farmacología , Neuronas Dopaminérgicas/fisiología , Ansiolíticos/farmacología , Dronabinol/farmacología , Dopamina/fisiología , Receptores de Cannabinoides , Área Tegmental Ventral/fisiología , Receptores Dopaminérgicos , Ratones Noqueados , Ácido Glutámico/farmacología , ARN Mensajero , Receptor Cannabinoide CB1/genética
2.
Annu Rev Pharmacol Toxicol ; 61: 609-628, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33411583

RESUMEN

The abuse of illicit psychostimulants such as cocaine and methamphetamine continues to pose significant health and societal challenges. Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions about what mechanism(s) of action should be targeted for developing pharmacotherapies. As both cocaine and methamphetamine rapidly increase dopamine (DA) levels in mesolimbic brain regions, leading to euphoria that in some can lead to addiction, targets in which this increased dopaminergic tone may be mitigated have been explored. Further, understanding and targeting mechanisms underlying relapse are fundamental to the success of discovering medications that reduce the reinforcing effects of the drug of abuse, decrease the negative reinforcement or withdrawal/negative affect that occurs during abstinence, or both. Atypical inhibitors of the DA transporter and partial agonists/antagonists at DA D3 receptors are described as two promising targets for future drug development.


Asunto(s)
Conducta Adictiva , Estimulantes del Sistema Nervioso Central , Cocaína , Preparaciones Farmacéuticas , Dopamina , Humanos
3.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064236

RESUMEN

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Asunto(s)
Ghrelina , Receptores de Ghrelina , Animales , Animales Modificados Genéticamente , Ghrelina/farmacología , Ratones , Oxicodona , Ratas , Ratas Long-Evans , Ratas Wistar
4.
J Neurosci ; 40(46): 8853-8869, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33046548

RESUMEN

Opioid reward has traditionally been thought to be mediated by GABA-induced disinhibition of dopamine (DA) neurons in the VTA. However, direct behavioral evidence supporting this hypothesis is still lacking. In this study, we found that the µ opioid receptor (MOR) gene, Oprm1, is highly expressed in GABA neurons, with ∼50% of GABA neurons in the substantia nigra pars reticulata (SNr), ∼30% in the VTA, and ∼70% in the tail of the VTA (also called the rostromedial tegmental nucleus) in male rats. No Oprm1 mRNA was detected in midbrain DA neurons. We then found that optogenetic inhibition of VTA DA neurons reduced intravenous heroin self-administration, whereas activation of these neurons produced robust optical intracranial self-stimulation in DAT-Cre mice, supporting an important role of DA neurons in opioid reward. Unexpectedly, pharmacological blockade of MORs in the SNr was more effective than in the VTA in reducing heroin reward. Optogenetic activation of VTA GABA neurons caused place aversion and inhibited cocaine, but not heroin, self-administration, whereas optogenetic activation of SNr GABA neurons caused a robust increase in heroin self-administration with an extinction pattern, suggesting a compensatory response in drug intake due to reduced heroin reward. In addition, activation of SNr GABA neurons attenuated heroin-primed, but not cue-induced, reinstatement of drug-seeking behavior, whereas inhibition of SNr GABA neurons produced optical intracranial self-stimulation and place preference. Together, these findings suggest that MORs on GABA neurons in the SNr play more important roles in opioid reward and relapse than MORs on VTA GABA neurons.SIGNIFICANCE STATEMENT Opioid reward has long been believed to be mediated by inhibition of GABA interneurons in the VTA that subsequently leads to disinhibition of DA neurons. In this study, we found that more µ opioid receptors (MORs) are expressed in GABA neurons in the neighboring SNr than in the VTA, and that pharmacological blockade of MORs in the SNr is more effective in reducing heroin reward than blockade of MORs in the VTA. Furthermore, optogenetic activation of VTA GABA neurons inhibited cocaine, but not heroin, self-administration, whereas activation of SNr GABA neurons inhibited heroin reward and relapse. These findings suggest that opioid reward is more likely mediated by stimulation of MORs in GABA afferents from other brain regions than in VTA GABA neurons.


Asunto(s)
Neuronas GABAérgicas/fisiología , Heroína/farmacología , Narcóticos/farmacología , Recompensa , Sustancia Negra/fisiología , Área Tegmental Ventral/fisiología , Animales , Señales (Psicología) , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Extinción Psicológica , Femenino , Masculino , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Optogenética , Ratas , Ratas Long-Evans , Receptores Opioides mu/biosíntesis , Receptores Opioides mu/genética , Autoadministración
5.
J Biomed Sci ; 28(1): 83, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34852810

RESUMEN

Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.


Asunto(s)
Conducta Adictiva/psicología , Dopamina/deficiencia , Neuronas Dopaminérgicas/metabolismo , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo , Reflejo , Animales , Conducta Apetitiva/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Ratones , Ratas , Reflejo/efectos de los fármacos
6.
Addict Biol ; 26(4): e13005, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33538103

RESUMEN

Despite extensive research, the rewarding effects of cannabinoids are still debated. Here, we used a newly established animal procedure called optogenetic intracranial self-stimulation (ICSS) (oICSS) to re-examine the abuse potential of cannabinoids in mice. A specific adeno-associated viral vector carrying a channelrhodopsin gene was microinjected into the ventral tegmental area (VTA) to express light-sensitive channelrhodopsin in dopamine (DA) neurons of transgenic dopamine transporter (DAT)-Cre mice. Optogenetic stimulation of VTA DA neurons was highly reinforcing and produced a classical "sigmoidal"-shaped stimulation-response curve dependent upon the laser pulse frequency. Systemic administration of cocaine dose-dependently enhanced oICSS and shifted stimulation-response curves upward, in a way similar to previously observed effects of cocaine on electrical ICSS. In contrast, Δ9 -tetrahydrocannabinol (Δ9 -THC), but not cannabidiol, dose-dependently decreased oICSS responding and shifted oICSS curves downward. WIN55,212-2 and ACEA, two synthetic cannabinoids often used in laboratory settings, also produced dose-dependent reductions in oICSS. We then examined several new synthetic cannabinoids, which are used recreationally. XLR-11 produced a cocaine-like increase, AM-2201 produced a Δ9 -THC-like reduction, while 5F-AMB had no effect on oICSS responding. Immunohistochemistry and RNAscope in situ hybridization assays indicated that CB1 Rs are expressed mainly in VTA GABA and glutamate neurons, while CB2 Rs are expressed mainly in VTA DA neurons. Together, these findings suggest that most cannabinoids are not reward enhancing, but rather reward attenuating or aversive in mice. Activation of CB1 R and/or CB2 R in different populations of neurons in the brain may underlie the observed actions.


Asunto(s)
Cannabinoides/efectos adversos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Optogenética/métodos , Animales , Conducta Animal , Cocaína/farmacología , Neuronas Dopaminérgicas , Dronabinol/farmacología , Integrasas , Masculino , Ratones , Ratones Transgénicos , Recompensa , Autoestimulación/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
7.
J Pharmacol Exp Ther ; 371(3): 602-614, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31562201

RESUMEN

Opioid and cocaine abuse are major public health burdens. Existing medications for opioid use disorder are limited by abuse liability and side effects, whereas no treatments are currently approved in the United States for cocaine use disorder. Dopamine D3 receptor (D3R) antagonists have shown promise in attenuating opioid and cocaine reward and mitigating relapse in preclinical models. However, translation of D3R antagonists to the clinic has been hampered by reports that the D3R antagonists GSK598,809 (5-(5-((3-((1S,5R)-1-(2-fluoro-4-(trifluoromethyl)phenyl)-3-azabicyclo[3.1.0]hexan-3-yl)propyl)thio)-4-methyl-4H-1,2,4-triazol-3-yl)-4-methyloxazole) and SB-277,011A (2-(2-((1r,4r)-4-(2-oxo-2-(quinolin-4-yl)ethyl)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile) have adverse cardiovascular effects in the presence of cocaine. Recently, we developed two structurally novel D3R antagonists, R-VK4-40 and R-VK4-116, which are highly selective for D3R and display translational potential for treatment of opioid use disorder. Here, we tested whether R-VK4-40 ((R)-N-(4-(4-(2-Chloro-3-ethylphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) and R-VK4-116 ((R)-N-(4-(4-(3-Chloro-5-ethyl-2-methoxyphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) have unwanted cardiovascular effects in the presence of oxycodone, a prescription opioid, or cocaine in freely moving rats fitted with surgically implanted telemetry transmitters. We also examined cardiovascular effects of the D3R antagonist, SB-277,011A, and L-741,626 (1-((1H-indol-3-yl)methyl)-4-(4-chlorophenyl)piperidin-4-ol), a dopamine D2 receptor-selective antagonist, for comparison. Consistent with prior reports, SB-277,011A increased blood pressure, heart rate, and locomotor activity alone and in the presence of cocaine. L-741,626 increased blood pressure and heart rate. In contrast, R-VK4-40 alone dose-dependently reduced blood pressure and heart rate and attenuated oxycodone-induced increases in blood pressure and oxycodone or cocaine-induced increases in heart rate. Similarly, R-VK4-116 alone dose-dependently reduced cocaine-induced increases in blood pressure and heart rate. These results highlight the safety of new D3R antagonists and support the continued development of R-VK4-40 and R-VK4-116 for the treatment of opioid and cocaine use disorders. SIGNIFICANCE STATEMENT: Opioid and cocaine abuse are major public health challenges and new treatments that do not adversely impact the cardiovascular system are needed. Here, we show that two structurally novel dopamine D3 receptor antagonists, R-VK4-40 and R-VK4-116, do not potentiate, and may even protect against, oxycodone- or cocaine-induced changes in blood pressure and heart rate, supporting their further development for the treatment of opioid and/or cocaine use disorders.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Cocaína/farmacología , Antagonistas de Dopamina/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Indoles/farmacología , Oxicodona/farmacología , Piperazinas/farmacología , Receptores de Dopamina D3/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Masculino , Nitrilos/farmacología , Piperidinas/farmacología , Ratas , Ratas Long-Evans , Tetrahidroisoquinolinas/farmacología
8.
Acta Pharmacol Sin ; 40(3): 398-409, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29967455

RESUMEN

Cannabinoid CB1 receptors are highly expressed in the brain and functionally modulate presynaptic neurotransmitter release, while cannabinoid CB2 receptors (CB2Rs) were initially identified in the spleen and regarded as peripheral cannabinoid receptors. Recently, growing evidence indicates the presence of functional CB2Rs in the brain. However, this finding is disputed because of the specificity of CB2R antibody signals. We used two strains of currently available partial CB2-knockout (CB2-KO) mice as controls, four anti-rat or anti-mouse CB2R antibodies, and mRNA quantification to further address this issue. Western blot assays using the four antibodies detected a CB2R-like band at ~40 kD in both the brain and spleen. Notably, more bands were detected in the brain than in the spleen, and specific immune peptides blocked band detection. Immunohistochemical assays also detected CB2-like immunostaining in mouse midbrain dopamine neurons. CB2R deletion in CB2-KO mice may reduce or leave CB2R-like immunoreactivity unaltered depending on antibody epitope. Antibodies with epitopes at the receptor-deleted region detected a significant reduction in CB2R band density and immunostaining in N-terminal-deleted Deltagen and C-terminal-deleted Zimmer strain CB2-KO mice. Other antibodies with epitopes at the predicted receptor-undeleted regions detected similar band densities and immunostaining in wild-type and CB2-KO mice. Quantitative RT-PCR assays detected CB2 mRNA expression using probes that targeted upstream or downstream gene sequences but not the probe that targeted the gene-deleted sequence in Deltagen or Zimmer CB2-KO mice. These findings suggest that none of the tested four polyclonal antibodies are highly mouse CB2R-specific. Non-specific binding may be related to the expression of mutant or truncated CB2R-like proteins in partial CB2-KO mice and the use of anti-rat CB2 antibodies because the epitopes are different between rat and mouse CB2Rs.


Asunto(s)
Anticuerpos/inmunología , Receptor Cannabinoide CB2/inmunología , Receptor Cannabinoide CB2/metabolismo , Animales , Western Blotting , Neuronas Dopaminérgicas/metabolismo , Técnicas de Inactivación de Genes , Inmunohistoquímica , Mesencéfalo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Cannabinoide CB2/genética , Bazo/metabolismo
9.
Acta Pharmacol Sin ; 40(3): 365-373, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29967454

RESUMEN

Cannabinoid CB1 receptors (CB1Rs) have been shown to be a promising target in medication development for the treatment of addiction. However, clinical trials with SR141716A (rimonabant, a selective CB1R antagonist/inverse agonist) for the treatment of obesity and smoking cessation failed due to unwanted side effects, such as depression, anxiety, and suicidal tendencies. Recent preclinical studies suggest that the neutral CB1R antagonist AM4113 may retain the therapeutic anti-addictive effects of SR141716A in nicotine self-administration models and possibly has fewer unwanted side effects. However, little is known about whether AM4113 is also effective for other drugs of abuse, such as opioids and psychostimulants, and whether it produces depressive side effects similar to SR141716A in experimental animals. In this study, we demonstrated that systemic administration of AM4113 (3 and 10 mg/kg) dose-dependently inhibited the self-administration of intravenous heroin but not cocaine or methamphetamine, whereas SR141716A (3 and 10 mg/kg) dose-dependently inhibited the self-administration of heroin and methamphetamine but not cocaine. In the electrical brain-stimulation reward (BSR) paradigm, SR141716A (3 and 10 mg/kg) dose-dependently increased the BSR stimulation threshold (i.e., decreased the stimulation reward), but AM4113 had no effect on BSR at the same doses, suggesting that SR141716A may produce aversive effects while AM4113 may not. Together, these findings show that neutral CB1R antagonists such as AM4113 deserve further research as a new class of CB1R-based medications for the treatment of opioid addiction without SR141716A-like aversive effects.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Depresión/prevención & control , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Dependencia de Heroína/prevención & control , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Animales , Conducta Animal/efectos de los fármacos , Cocaína/efectos adversos , Condicionamiento Operante/efectos de los fármacos , Heroína/efectos adversos , Dependencia de Heroína/psicología , Masculino , Metanfetamina/efectos adversos , Ratas Long-Evans , Recompensa , Rimonabant/efectos adversos , Rimonabant/farmacología , Autoadministración
10.
Addict Biol ; 23(3): 868-879, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28857460

RESUMEN

Poor working memory is linked to future risk-taking behaviors. Lifelong risk of habitual drug use is highest in individuals who initiate use in early adolescence. We sought to determine in rats whether juvenile traits, specifically poor working memory and low salivary brain-derived neurotrophic factor (BDNF), are related to elevated cocaine taking and relapse in adolescence and adulthood. On postnatal day (P) 20, working memory was assessed using the novel object recognition task in male and female rats. Saliva was assayed at P20 for BDNF before cocaine self-administration on P28 [0.75 or 0.25 mg/kg/infusion for 30 days under a fixed-ratio (FR) 1 to FR5 schedule] and on P94 before relapse after 30-day abstinence in adulthood. A separate cohort of P28 male rats was assayed for object discrimination and BDNF in saliva and the medial prefrontal cortex and dorsolateral striatum. Novel object discrimination correlated positively with salivary BDNF on P20 and dorsolateral striatum levels, but negatively with medial prefrontal cortex BDNF in male rats. In female rats, P20 salivary BDNF negatively correlated with object discrimination. Salivary BDNF positively correlated across age in male rats. Male rats earned more cocaine (0.75 mg/kg) at FR5 and responded more at relapse than did female rats. These elevated relapse rates in male rats were significantly associated with P20 object discrimination and salivary BDNF. Relapse after 0.75 and 0.25 mg/kg in female rats correlated only with object discrimination. In conclusion, poor working memory and low salivary BDNF in juvenile male rats may represent biomarkers for later cocaine use. Further research is needed to identify biomarkers for risk in male rats.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas , Memoria a Corto Plazo , Animales , Conducta Animal , Cuerpo Estriado/metabolismo , Femenino , Masculino , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Medición de Riesgo , Saliva/química , Autoadministración , Factores Sexuales
13.
Pain ; 165(4): 741-752, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870233

RESUMEN

ABSTRACT: Procedural anxiety and pain negatively affect surgical outcomes and the patient experience during awake, invasive procedures (AIPs). This systematic review aims to evaluate the effect of using virtual reality (VR) to enhance the intraprocedural patient experience during AIPs. PRISMA, Cochrane, and SWiM Reporting Items guidelines were followed. PubMed, EMBASE, CENTRAL, and medRxiv databases were systematically searched for randomised controlled trials (RCTs) investigating the use of immersive VR headsets to enhance the patient experience in adults undergoing AIPs. Sixteen studies were included. The VR and control groups comprised 685 and 677 patients, respectively. Patients underwent endoscopic procedures in 9 studies ("endoscopic") and interventions that involved a skin incision in 7 studies ("incision"). Eleven (of 13) studies demonstrated a favourable effect on procedural anxiety with VR use compared with standard intraprocedural care (85% [95% CI: 46%-100%], P = 0.011). Ten (of 13) studies demonstrated a favourable effect on pain with VR use (77% [95% CI: 38%-100%], P = 0.046). Seven (of 9) studies demonstrated a favourable VR effect on patient satisfaction (78% (95% CI: 44%-100%), P = 0.070). The effect of VR on physiological markers of anxiety and pain and requirements for additional pro re nata (PRN) analgesia and sedation were not clear. No significant differences in patient experience were identified between the "incision" and "endoscopic" subgroups. This review demonstrates that VR can feasibly be used to enhance the patient experience during AIPs by attenuating subjective perceptions of procedural anxiety and pain. However, further RCTs are required to elucidate the effect of VR on more objective measures of the patient experience.


Asunto(s)
Realidad Virtual , Vigilia , Adulto , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Dolor , Evaluación del Resultado de la Atención al Paciente
14.
J Psychiatr Res ; 175: 118-122, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728914

RESUMEN

Although gender differences in the prevalence of substance use disorders (SUD) have been well-characterized, little is known about when gender differences emerge along the continuum of substance use. Understanding the contribution of gender to risk at key transition points across this continuum is needed to identify potential mechanisms underlying gender differences and to inform improved gender-responsive interventions. To characterize gender differences in the progression of cannabis, cocaine, and heroin use, the current study used data from the United States-based 2015-2019 National Survey on Drug Use and Health to quantify gender differences in: (1) perceived access to drugs, (2) lifetime drug use among individuals with at least some access, and (3) past-year SUD among those who had ever used each drug. Logistic regressions were conducted for each drug to examine gender differences across all three stages, controlling for sociodemographic factors and survey year. Compared to women, men had higher odds of reporting access to and lifetime use of all three drug types. Men also had higher odds of past-year cannabis and cocaine use disorders compared to women. Results suggest gender differences emerge in the earliest stage of drug use (access) and may accumulate across the stages of use. The magnitude of gender differences varied across stages, with the largest differences observed for odds of drug initiation among those with perceived access to each drug. Longitudinal data will be needed to confirm these findings and to provide insight into potential contributors to gender-specific risk and intervention targets across the continuum of drug use severity.


Asunto(s)
Encuestas Epidemiológicas , Humanos , Masculino , Femenino , Estados Unidos/epidemiología , Adulto , Persona de Mediana Edad , Adulto Joven , Adolescente , Factores Sexuales , Trastornos Relacionados con Sustancias/epidemiología , Drogas Ilícitas , Trastornos Relacionados con Cocaína/epidemiología , Abuso de Marihuana/epidemiología , Caracteres Sexuales
15.
Dev Cogn Neurosci ; 69: 101431, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173581

RESUMEN

The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Study success depends on the engagement and inclusion of diverse populations of pregnant participants and their children across the United States, including those at high and low risk for prenatal substance use. The Communications, Engagement, and Dissemination (CED) Committee is responsible for the development and implementation of a strategy to promote awareness about the study, encourage participation, and engage HBCD families, community partners, and collaborators. Initial work involved developing versatile recruitment and awareness materials with a consistent and inclusive message that reduces stigma and negative bias towards marginalized populations, including people with substance use and other mental health conditions. These efforts were shaped by an integrated product development workflow and early engagement with HBCD partners to address challenges. Ongoing work includes the expansion of HBCD outreach through newsletters and social media platforms with an emphasis on protecting participant privacy. Future activities will focus on disseminating scientific information through generation of infographics and webinars that will inform participants, families, and the public of discoveries generated from HBCD Study data.


Asunto(s)
Desarrollo Infantil , Humanos , Femenino , Estudios Longitudinales , Niño , Embarazo , Difusión de la Información/métodos , Encéfalo/crecimiento & desarrollo , Estudios Prospectivos , Preescolar , Estados Unidos , Comunicación
16.
Biol Psychiatry ; 96(9): 752-765, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838841

RESUMEN

BACKGROUND: Past research has illuminated pivotal roles of dopamine D3 receptors (D3R) in the rewarding effects of cocaine and opioids. However, the cellular and neural circuit mechanisms that underlie these actions remain unclear. METHODS: We employed Cre-LoxP techniques to selectively delete D3R from presynaptic dopamine neurons or postsynaptic dopamine D1 receptor (D1R)-expressing neurons in male and female mice. We utilized RNAscope in situ hybridization, immunohistochemistry, real-time polymerase chain reaction, voltammetry, optogenetics, microdialysis, and behavioral assays (n ≥ 8 animals per group) to functionally characterize the roles of presynaptic versus postsynaptic D3R in cocaine and opioid actions. RESULTS: Our results revealed D3R expression in ∼25% of midbrain dopamine neurons and ∼70% of D1R-expressing neurons in the nucleus accumbens. While dopamine D2 receptors (D2R) were expressed in ∼80% dopamine neurons, we found no D2R and D3R colocalization among these cells. Selective deletion of D3R from dopamine neurons increased exploratory behavior in novel environments and enhanced pulse-evoked nucleus accumbens dopamine release. Conversely, deletion of D3R from D1R-expressing neurons attenuated locomotor responses to D1-like and D2-like agonists. Strikingly, deletion of D3R from either cell type reduced oxycodone self-administration and oxycodone-enhanced brain-stimulation reward. In contrast, neither of these D3R deletions impacted cocaine self-administration, cocaine-enhanced brain-stimulation reward, or cocaine-induced hyperlocomotion. Furthermore, D3R knockout in dopamine neurons reduced oxycodone-induced hyperactivity and analgesia, while deletion from D1R-expressing neurons potentiated opioid-induced hyperactivity without affecting analgesia. CONCLUSIONS: We dissected presynaptic versus postsynaptic D3R function in the mesolimbic dopamine system. D2R and D3R are expressed in different populations of midbrain dopamine neurons, regulating dopamine release. Mesolimbic D3R are critically involved in the actions of opioids but not cocaine.


Asunto(s)
Analgésicos Opioides , Cocaína , Neuronas Dopaminérgicas , Núcleo Accumbens , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Recompensa , Animales , Cocaína/farmacología , Cocaína/administración & dosificación , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/genética , Masculino , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Femenino , Analgésicos Opioides/farmacología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Dopamina/metabolismo , Ratones Endogámicos C57BL , Mesencéfalo/metabolismo , Mesencéfalo/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación
17.
Dev Cogn Neurosci ; 69: 101423, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098249

RESUMEN

The human brain undergoes rapid development during the first years of life. Beginning in utero, a wide array of biological, social, and environmental factors can have lasting impacts on brain structure and function. To understand how prenatal and early life experiences alter neurodevelopmental trajectories and shape health outcomes, several NIH Institutes, Centers, and Offices collaborated to support and launch the HEALthy Brain and Child Development (HBCD) Study. The HBCD Study is a multi-site prospective longitudinal cohort study, that will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Influenced by the success of the ongoing Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®) and in partnership with the NIH Helping to End Addiction Long-term® Initiative, or NIH HEAL Initiative®, the HBCD Study aims to establish a diverse cohort of over 7000 pregnant participants to understand how early life experiences, including prenatal exposure to addictive substances and adverse social environments as well as their interactions with an individual's genes, can affect neurodevelopmental trajectories and outcomes. Knowledge gained from the HBCD Study will help identify targets for early interventions and inform policies that promote resilience and mitigate the neurodevelopmental effects of adverse childhood experiences and environments.


Asunto(s)
Encéfalo , Desarrollo Infantil , National Institutes of Health (U.S.) , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Desarrollo Infantil/fisiología , Estados Unidos , Encéfalo/crecimiento & desarrollo , Embarazo , Niño , Estudios Longitudinales , Preescolar , Estudios Prospectivos , Adolescente , Lactante
18.
Eur J Neurosci ; 37(2): 269-77, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23106490

RESUMEN

Sites within the hippocampus, amygdala and prefrontal cortex may regulate how responses maintained by cues associated with cocaine are extinguished. To test the role of various brain sites in the consolidation of cocaine-cue extinction learning, the dorsal subiculum (dSUB), rostral basolateral amygdala (rBLA) and infralimbic prefrontal cortex (IL) were manipulated in rats. Following cocaine self-administration training (cues present, cocaine available), responding was assessed during 1-h extinction tests (cues present, no cocaine available). To study extinction consolidation specifically, the protein synthesis inhibitor anisomycin or vehicle was infused bilaterally into the dSUB, rBLA or IL either immediately following or 6 h after the first two of three extinction training sessions. With manipulations made immediately after extinction sessions, infusions of anisomycin into the dSUB or the rBLA deterred extinction. Rats maintained elevated levels of cocaine seeking relative to vehicle despite the absence of cocaine delivery. Manipulations of IL had no effect. Control studies showed that bilateral protein synthesis inhibition in dSUB and rBLA 6 h after the extinction sessions ended was unable to deter extinction. Rats reduced cocaine seeking in the usual manner in the absence of cocaine delivery. Collectively, these findings suggest that the dSUB and rBLA are neural substrates important for consolidation of cocaine-cue extinction learning and have time-dependent roles. Understanding the contribution of individual neural substrates for cocaine-cue extinction consolidation may help guide treatment strategies aimed at enhancing cue exposure therapy in cocaine-dependent people.


Asunto(s)
Amígdala del Cerebelo/fisiología , Cocaína/farmacología , Señales (Psicología) , Extinción Psicológica/fisiología , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Animales , Anisomicina/farmacología , Extinción Psicológica/efectos de los fármacos , Masculino , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
20.
Curr Addict Rep ; 10: 638-648, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38505370

RESUMEN

Purpose of Review: The purpose of this review is to examine recent literature (2012-2022) on alcohol treatment access and engagement in women in the U.S. and propose future directions for research and clinical practice. Recent Findings: A targeted literature review resulted in 27 studies encompassing screening and brief intervention (SBIRT), treatment utilization, treatment engagement, and barriers to treatment. Recent literature demonstrates overall low rates of screening and brief interventions and treatment utilization in the population with women less likely to be screened and utilize alcohol treatment. The magnitude of these gender differences varies with race/ethnicity. Extensive barriers to care include provider knowledge, structural barriers, and attitudinal barriers and these vary with service setting, gender, and race/ethnicity. Summary: There is an increasing prevalence of alcohol use and Alcohol Use Disorder (AUD) in women with low rates of screening, brief treatment, treatment, and engagement which have resulted from extensive barriers to care. Possible areas of further inquiry include the impact of race/ethnicity on gender differences, improving provider and system level policies to promote SBIRT and treatment engagement and utilization, further developing digital interventions, and implementation research to investigate factors associated with optimizing effectiveness of gender-responsive and culturally tailored interventions that address the unique needs of women.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA