Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445040

RESUMEN

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
2.
Plant Cell ; 36(7): 2570-2586, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513612

RESUMEN

Enhancers are cis-regulatory elements that shape gene expression in response to numerous developmental and environmental cues. In animals, several models have been proposed to explain how enhancers integrate the activity of multiple transcription factors. However, it remains largely unclear how plant enhancers integrate transcription factor activity. Here, we use Plant STARR-seq to characterize 3 light-responsive plant enhancers-AB80, Cab-1, and rbcS-E9-derived from genes associated with photosynthesis. Saturation mutagenesis revealed mutations, many of which clustered in short regions, that strongly reduced enhancer activity in the light, in the dark, or in both conditions. When tested in the light, these mutation-sensitive regions did not function on their own; rather, cooperative interactions with other such regions were required for full activity. Epistatic interactions occurred between mutations in adjacent mutation-sensitive regions, and the spacing and order of mutation-sensitive regions in synthetic enhancers affected enhancer activity. In contrast, when tested in the dark, mutation-sensitive regions acted independently and additively in conferring enhancer activity. Taken together, this work demonstrates that plant enhancers show evidence for both cooperative and additive interactions among their functional elements. This knowledge can be harnessed to design strong, condition-specific synthetic enhancers.


Asunto(s)
Arabidopsis , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Mutación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Epistasis Genética , Luz
3.
Plant Cell ; 32(7): 2120-2131, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32409318

RESUMEN

Genetic engineering of cis-regulatory elements in crop plants is a promising strategy to ensure food security. However, such engineering is currently hindered by our limited knowledge of plant cis-regulatory elements. Here, we adapted self-transcribing active regulatory region sequencing (STARR-seq)-a technology for the high-throughput identification of enhancers-for its use in transiently transformed tobacco (Nicotiana benthamiana) leaves. We demonstrate that the optimal placement in the reporter construct of enhancer sequences from a plant virus, pea (Pisum sativum) and wheat (Triticum aestivum), was just upstream of a minimal promoter and that none of these four known enhancers was active in the 3' untranslated region of the reporter gene. The optimized assay sensitively identified small DNA regions containing each of the four enhancers, including two whose activity was stimulated by light. Furthermore, we coupled the assay to saturation mutagenesis to pinpoint functional regions within an enhancer, which we recombined to create synthetic enhancers. Our results describe an approach to define enhancer properties that can be performed in potentially any plant species or tissue transformable by Agrobacterium and that can use regulatory DNA derived from any plant genome.


Asunto(s)
Elementos de Facilitación Genéticos , Nicotiana/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Agrobacterium/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Luz , Virus de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Prueba de Estudio Conceptual , Transformación Genética , Triticum/genética
4.
PLoS Biol ; 17(1): e3000098, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608924

RESUMEN

Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent ß-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in ß-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Trichomonas vaginalis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Orgánulos , Filogenia , Transporte de Proteínas/fisiología , Trichomonas vaginalis/patogenicidad , Trichomonas vaginalis/fisiología
5.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37398426

RESUMEN

The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.

6.
Nat Commun ; 15(1): 5868, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997252

RESUMEN

The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.


Asunto(s)
Arabidopsis , Poliadenilación , Zea mays , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Regiones Terminadoras Genéticas/genética , Nicotiana/genética , Nicotiana/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Curr Opin Plant Biol ; 75: 102403, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331209

RESUMEN

Understanding plant gene regulation has been a priority for generations of plant scientists. However, due to its complex nature, the regulatory code governing plant gene expression has yet to be deciphered comprehensively. Recently developed methods-often relying on next-generation sequencing technology and state-of-the-art computational approaches-have started to further our understanding of the gene regulatory logic used by plants. In this review, we discuss these methods and the insights into the regulatory code of plants that they can yield.


Asunto(s)
Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Regulación de la Expresión Génica de las Plantas/genética , Cromatina
8.
Nat Comput Sci ; 3(11): 946-956, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38177592

RESUMEN

Deep learning has become a popular tool to study cis-regulatory function. Yet efforts to design software for deep-learning analyses in regulatory genomics that are findable, accessible, interoperable and reusable (FAIR) have fallen short of fully meeting these criteria. Here we present elucidating the utility of genomic elements with neural nets (EUGENe), a FAIR toolkit for the analysis of genomic sequences with deep learning. EUGENe consists of a set of modules and subpackages for executing the key functionality of a genomics deep learning workflow: (1) extracting, transforming and loading sequence data from many common file formats; (2) instantiating, initializing and training diverse model architectures; and (3) evaluating and interpreting model behavior. We designed EUGENe as a simple, flexible and extensible interface for streamlining and customizing end-to-end deep-learning sequence analyses, and illustrate these principles through application of the toolkit to three predictive modeling tasks. We hope that EUGENe represents a springboard towards a collaborative ecosystem for deep-learning applications in genomics research.


Asunto(s)
Genómica , Genoma , Programas Informáticos , Flujo de Trabajo
9.
Nat Plants ; 7(6): 842-855, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34083762

RESUMEN

Targeted engineering of plant gene expression holds great promise for ensuring food security and for producing biopharmaceuticals in plants. However, this engineering requires thorough knowledge of cis-regulatory elements to precisely control either endogenous or introduced genes. To generate this knowledge, we used a massively parallel reporter assay to measure the activity of nearly complete sets of promoters from Arabidopsis, maize and sorghum. We demonstrate that core promoter elements-notably the TATA box-as well as promoter GC content and promoter-proximal transcription factor binding sites influence promoter strength. By performing the experiments in two assay systems, leaves of the dicot tobacco and protoplasts of the monocot maize, we detect species-specific differences in the contributions of GC content and transcription factors to promoter strength. Using these observations, we built computational models to predict promoter strength in both assay systems, allowing us to design highly active promoters comparable in activity to the viral 35S minimal promoter. Our results establish a promising experimental approach to optimize native promoter elements and generate synthetic ones with desirable features.


Asunto(s)
Arabidopsis/genética , Regiones Promotoras Genéticas , Sorghum/genética , Zea mays/genética , Regiones no Traducidas 5' , Sitios de Unión , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Técnicas Genéticas , Genoma de Planta , Luz , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Secuencias Reguladoras de Ácidos Nucleicos , TATA Box , Nicotiana/genética
10.
Ann N Y Acad Sci ; 1506(1): 35-54, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34435370

RESUMEN

Facing the challenges of the world's food sources posed by a growing global population and a warming climate will require improvements in plant breeding and technology. Enhancing crop resiliency and yield via genome engineering will undoubtedly be a key part of the solution. The advent of new tools, such as CRIPSR/Cas, has ushered in significant advances in plant genome engineering. However, several serious challenges remain in achieving this goal. Among them are efficient transformation and plant regeneration for most crop species, low frequency of some editing applications, and high attrition rates. On March 8 and 9, 2021, experts in plant genome engineering and breeding from academia and industry met virtually for the Keystone eSymposium "Plant Genome Engineering: From Lab to Field" to discuss advances in genome editing tools, plant transformation, plant breeding, and crop trait development, all vital for transferring the benefits of novel technologies to the field.


Asunto(s)
Congresos como Asunto , Productos Agrícolas/genética , Ingeniería Genética/métodos , Genoma de Planta/genética , Fitomejoramiento/métodos , Informe de Investigación , Sistemas CRISPR-Cas/genética , Congresos como Asunto/tendencias , Edición Génica/métodos , Edición Génica/tendencias , Marcación de Gen/métodos , Marcación de Gen/tendencias , Ingeniería Genética/tendencias
11.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355130

RESUMEN

Chaperones are essential for assisting protein folding and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone-client binding, but our understanding of how additional interactions enable client specificity is sparse. Here, we decipher what determines binding of two chaperones (TIM8·13 and TIM9·10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1 and Tim23, which has an additional disordered hydrophilic domain. Combining NMR, SAXS, and molecular dynamics simulations, we determine the structures of Tim23/TIM8·13 and Tim23/TIM9·10 complexes. TIM8·13 uses transient salt bridges to interact with the hydrophilic part of its client, but its interactions to the transmembrane part are weaker than in TIM9·10. Consequently, TIM9·10 outcompetes TIM8·13 in binding hydrophobic clients, while TIM8·13 is tuned to few clients with both hydrophilic and hydrophobic parts. Our study exemplifies how chaperones fine-tune the balance of promiscuity versus specificity.


Asunto(s)
Membranas Mitocondriales , Chaperonas Moleculares , Humanos , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Chaperonas Moleculares/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
12.
J Cell Biol ; 217(9): 3091-3108, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29930205

RESUMEN

Mitochondrial ß-barrel proteins are encoded in the nucleus, translated by cytosolic ribosomes, and then imported into the organelle. Recently, a detailed understanding of the intramitochondrial import pathway of ß-barrel proteins was obtained. In contrast, it is still completely unclear how newly synthesized ß-barrel proteins reach the mitochondrial surface in an import-competent conformation. In this study, we show that cytosolic Hsp70 chaperones and their Hsp40 cochaperones Ydj1 and Sis1 interact with newly synthesized ß-barrel proteins. These interactions are highly relevant for proper biogenesis, as inhibiting the activity of the cytosolic Hsp70, preventing its docking to the mitochondrial receptor Tom70, or depleting both Ydj1 and Sis1 resulted in a significant reduction in the import of such substrates into mitochondria. Further experiments demonstrate that the interactions between ß-barrel proteins and Hsp70 chaperones and their importance are conserved also in mammalian cells. Collectively, this study outlines a novel mechanism in the early events of the biogenesis of mitochondrial outer membrane ß-barrel proteins.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Cultivadas , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Unión Proteica/fisiología , Saccharomyces cerevisiae
13.
FEBS Lett ; 591(17): 2671-2681, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28640525

RESUMEN

The endosymbiotic organelles mitochondria and chloroplasts harbour, similarly to their prokaryotic progenitors, ß-barrel proteins in their outer membrane. These proteins are encoded on nuclear DNA, translated on cytosolic ribosomes and imported into their target organelles by a dedicated machinery. Recent studies have provided insights into the import into the organelles and the membrane insertion of these proteins. Although the cytosolic stages of their biogenesis are less well defined, it is speculated that upon their synthesis, chaperones prevent ß-barrel proteins from aggregation and keep them in an import-competent conformation. In this Review, we summarize the current knowledge about the biogenesis of ß-barrel proteins, focusing on the early stages from the translation on cytosolic ribosomes to the recognition on the surface of the organelle.


Asunto(s)
Eucariontes/metabolismo , Biosíntesis de Proteínas , Proteínas/química , Animales , Citosol/metabolismo , Eucariontes/citología , Eucariontes/genética , Humanos , Conformación Proteica en Lámina beta , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo
14.
FEBS J ; 283(18): 3338-52, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27412066

RESUMEN

Most mitochondrial proteins are synthesized in the cytosol prior to their import into the organelle. It is commonly accepted that cytosolic factors are required for delivering precursor proteins to the mitochondrial surface and for keeping newly synthesized proteins in an import-competent conformation. However, the identity of such factors and their defined contribution to the import process are mostly unknown. Using a presequence-containing model protein and a site-directed photo-crosslinking approach in yeast cells we identified the cytosolic chaperones Hsp70 (Ssa1) and Hsp90 (Hsp82) as well as their cochaperones, Sti1 and Ydj1, as putative cytosolic factors involved in mitochondrial protein import. Deletion of STI1 caused both alterations in mitochondrial morphology and lower steady-state levels of a subset of mitochondrial proteins. In addition, double deletion of STI1 with the mitochondrial import factors, MIM1 or TOM20, showed a synthetic growth phenotype indicating a genetic interaction of STI1 with these genes. Moreover, recombinant cytosolic domains of the import receptors Tom20 and Tom70 were able to bind in vitro Sti1 and other cytosolic factors. In summary, our observations point to a, direct or indirect, role of Sti1 for mitochondrial functionality.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Reactivos de Enlaces Cruzados , Citosol/metabolismo , Eliminación de Gen , Genes Fúngicos , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
15.
Nat Commun ; 7: 12036, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27345737

RESUMEN

Mitochondrial ß-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized ß-hairpin motif is this long searched for signal. We demonstrate that a synthetic ß-hairpin peptide competes with the import of mitochondrial ß-barrel proteins and that proteins harbouring a ß-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a ß-hairpin motif from mitochondrial proteins targets chloroplast ß-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the ß-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that ß-barrel proteins are targeted to mitochondria by a dedicated ß-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Arabidopsis , Proteínas Mitocondriales/fisiología , Modelos Moleculares , Conformación Proteica , Protoplastos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
16.
Mol Cell Biol ; 35(18): 3200-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149385

RESUMEN

A special group of mitochondrial outer membrane (MOM) proteins spans the membrane several times via multiple helical segments. Such multispan proteins are synthesized on cytosolic ribosomes before their targeting to mitochondria and insertion into the MOM. Previous work recognized the import receptor Tom70 and the mitochondrial import (MIM) complex, both residents of the MOM, as required for optimal biogenesis of these proteins. However, their involvement is not sufficient to explain either the entire import pathway or its regulation. To identify additional factors that are involved in the biogenesis of MOM multispan proteins, we performed complementary high-throughput visual and growth screens in Saccharomyces cerevisiae. Cardiolipin (CL) synthase (Crd1) appeared as a candidate in both screens. Our results indeed demonstrate lower steady-state levels of the multispan proteins Ugo1, Scm4, and Om14 in mitochondria from crd1Δ cells. Importantly, MOM single-span proteins were not affected by this mutation. Furthermore, organelles lacking Crd1 had a lower in vitro capacity to import newly synthesized Ugo1 and Scm4 molecules. Crd1, which is located in the mitochondrial inner membrane, condenses phosphatidylglycerol together with CDP-diacylglycerol to obtain de novo synthesized CL molecules. Hence, our findings suggest that CL is an important component in the biogenesis of MOM multispan proteins.


Asunto(s)
Cardiolipinas/biosíntesis , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/fisiología , Saccharomyces cerevisiae/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Citidina Difosfato Diglicéridos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas de la Membrana/biosíntesis , Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/biosíntesis , Fosfatidilgliceroles/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA