RESUMEN
ABSTRACT: In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).
Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Homeostasis , Animales , Humanos , Ratones , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Análisis de la Célula IndividualRESUMEN
Complex organisms are able to respond to diverse environmental cues by rapidly inducing specific transcriptional programs comprising a few dozen genes among thousands. The highly complex environment within the nucleus-a crowded milieu containing large genomes tightly condensed with histone proteins in the form of chromatin-makes inducible transcription a challenge for the cell, akin to the proverbial needle in a haystack. The different signaling pathways and transcription factors involved in the transmission of information from the cell surface to the nucleus have been readily explored, but not so much the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation. Signaling pathways rely on cascades of protein kinases that, in addition to activating transcription factors can also activate the chromatin template by phosphorylating histone proteins, what we refer to as "signaling-to-chromatin." These pathways appear to be selectively employed and especially critical for driving inducible transcription in macrophages and likely in diverse other immune cell populations. Here, we discuss signaling-to-chromatin pathways with potential relevance in diverse immune cell populations together with chromatin related mechanisms that help to "solve" the needle in a haystack challenge of robust chromatin activation and inducible transcription.