Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 45(2): 832-845, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-27915232

RESUMEN

Cooperative binding of transcription factors is known to be important in the regulation of gene expression programs conferring cellular identities. However, current methods to measure cooperativity parameters have been laborious and therefore limited to studying only a few sequence variants at a time. We developed Coop-seq (cooperativity by sequencing) that is capable of efficiently and accurately determining the cooperativity parameters for hundreds of different DNA sequences in a single experiment. We apply Coop-seq to 12 dimer pairs from the Sox and POU families of transcription factors using 324 unique sequences with changed half-site orientation, altered spacing and discrete randomization within the binding elements. The study reveals specific dimerization profiles of different Sox factors with Oct4. By contrast, Oct4 and the three neural class III POU factors Brn2, Brn4 and Oct6 assemble with Sox2 in a surprisingly indistinguishable manner. Two novel half-site configurations can support functional Sox/Oct dimerization in addition to known composite motifs. Moreover, Coop-seq uncovers a nucleotide switch within the POU half-site when spacing is altered, which is mirrored in genomic loci bound by Sox2/Oct4 complexes.


Asunto(s)
Factores del Dominio POU/metabolismo , Factores de Transcripción SOX/metabolismo , Animales , ADN/química , ADN/metabolismo , Ratones , Modelos Moleculares , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores del Dominio POU/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Factores de Transcripción SOX/química , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/metabolismo
2.
Biomacromolecules ; 9(7): 1988-96, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18547107

RESUMEN

Emulsan has been reported as an emulsion stabilizing amphipathic lipoheteropolysaccharide secreted by the oil-degrading bacterium Acinetobacter venetianus RAG-1. Previously, emulsan was regarded as a single polymer. As a result of developing a new purification process, we have discovered that emulsan is a complex of approximately 80% (w/w) lipopolysaccharide (LPS) and 20% (w/w) high molecular weight exopolysaccharide (EPS). The EPS was purified to 98% (w/w) using tangential flow filtration, Triton X-114 phase extraction, ammonium sulfate precipitation, and hydrophobic interaction chromatography. Several previously reported physical properties of emulsan can be attributed to the LPS fraction, such as charge, fatty acid profile, and solution behavior, while the EPS is responsible for the emulsion stabilization activity. The EPS is believed to be cationic in nature, thus providing an electrostatic binding mechanism for the formation of the emulsan complex.


Asunto(s)
Polisacáridos Bacterianos/química , Acinetobacter , Cationes , Emulsiones , Excipientes , Ácidos Grasos/análisis , Lipopolisacáridos , Polisacáridos Bacterianos/aislamiento & purificación , Electricidad Estática
3.
Quant Biol ; 6(1): 68-84, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37990674

RESUMEN

Background: Sequence-specific binding by transcription factors (TFs) plays a significant role in the selection and regulation of target genes. At the protein:DNA interface, amino acid side-chains construct a diverse physicochemical network of specific and non-specific interactions, and seemingly subtle changes in amino acid identity at certain positions may dramatically impact TF:DNA binding. Variation of these specificity-determining residues (SDRs) is a major mechanism of functional divergence between TFs with strong structural or sequence homology. Methods: In this study, we employed a combination of high-throughput specificity profiling by SELEX and Spec-seq, structural modeling, and evolutionary analysis to probe the binding preferences of winged helix-turn-helix TFs belonging to the OmpR sub-family in Escherichia coli. Results: We found that E. coli OmpR paralogs recognize tandem, variably spaced repeats composed of "GT-A" or "GCT"-containing half-sites. Some divergent sequence preferences observed within the "GT-A" mode correlate with amino acid similarity; conversely, "GCT"-based motifs were observed for a subset of paralogs with low sequence homology. Direct specificity profiling of a subset of OmpR homologues (CpxR, RstA, and OmpR) as well as predicted "SDR-swap" variants revealed that individual SDRs may impact sequence preferences locally through direct contact with DNA bases or distally via the DNA backbone. Conclusions: Overall, our work provides evidence for a common structural code for sequence-specific wHTH:DNA interactions, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Further examination of SDR predictions will likely reveal additional mechanisms controlling the evolutionary divergence of this important class of transcriptional regulators.

4.
J Microbiol Biol Educ ; 17(2): 225-36, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27158303

RESUMEN

The goal of the Young Scientist Program (YSP) at Washington University School of Medicine in St. Louis (WUSM) is to broaden science literacy and recruit talent for the scientific future. In particular, YSP seeks to expose underrepresented minority high school students from St. Louis public schools (SLPS) to a wide variety of careers in the sciences. The centerpiece of YSP, the Summer Focus Program (SFP), is a nine-week, intensive research experience for competitively chosen rising high school seniors (Scholars). Scholars are paired with volunteer graduate student, medical student, or postdoctoral fellow mentors who are active members of the practicing scientific community and serve as guides and exemplars of scientific careers. The SFP seeks to increase the number of underrepresented minority students pursuing STEM undergraduate degrees by making the Scholars more comfortable with science and science literacy. The data presented here provide results of the objective, quick, and simple methods developed by YSP to assess the efficacy of the SFP from 2006 to 2013. We demonstrate that the SFP successfully used formative evaluation to continuously improve the various activities within the SFP over the course of several years and in turn enhance student experiences within the SFP. Additionally we show that the SFP effectively broadened confidence in science literacy among participating high school students and successfully graduated a high percentage of students who went on to pursue science, technology, engineering, and mathematics (STEM) majors at the undergraduate level.

5.
Brief Funct Genomics ; 14(1): 39-49, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25414269

RESUMEN

Protein:DNA interactions are essential to a range of processes that maintain and express the information encoded in the genome. Structural modeling is an approach that aims to understand these interactions at the physicochemical level. It has been proposed that structural modeling can lead to deeper understanding of the mechanisms of protein:DNA interactions, and that progress in this field can not only help to rationalize the observed specificities of DNA-binding proteins but also to allow researchers to engineer novel DNA site specificities. In this review we discuss recent developments in the structural description of protein:DNA interactions and specificity, as well as the challenges facing the field in the future.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Modelos Moleculares , Relación Estructura-Actividad , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA