Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 20(8)2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31010052

RESUMEN

Early blight is a disease that greatly affects Solanaceae, mainly damaging tomato plants, and causing significant economic losses. Although there are methods of biological control, these are very expensive and often their mode of action is slow. Due to this, there is a need to use new techniques that allow a more efficient control of pathogens. Nanotechnology is a new alternative to solve these problems, allowing the creation of new tools for the treatment of diseases in plants, as well as the control of pathogens. The aim of the present investigation was to evaluate the foliar application of selenium and copper in the form of nanoparticles in a tomato crop infested by Alternaria solani. The severity of Alternaria solani, agronomic variables of the tomato crop, and the changes in the enzymatic and non-enzymatic antioxidant compounds were evaluated. The joint application of Se and Cu nanoparticles decreases the severity of this pathogen in tomato plants. Moreover, high doses generated an induction of the activity of the enzymes superoxide dismutase, ascorbate peroxidase, glutathione peroxidase (GPX) and phenylalanine ammonia lyase in the leaves, and the enzyme GPX in the fruit. Regarding non-enzymatic compounds in the leaves, chlorophyll a, b, and totals were increased, whereas vitamin C, glutathione, phenols, and flavonoids were increased in fruits. The application of nanoparticles generated beneficial effects by increasing the enzymatic and non-enzymatic compounds and decreasing the severity of Alternaria solani in tomato plants.


Asunto(s)
Alternaria/fisiología , Cobre/farmacología , Nanopartículas/química , Selenio/farmacología , Solanum lycopersicum/microbiología , Solanum lycopersicum/fisiología , Estrés Fisiológico/efectos de los fármacos , Alternaria/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Fenilanina Amoníaco-Liasa/metabolismo , Pigmentos Biológicos/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
2.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766644

RESUMEN

Tomato is one of the most economically important vegetables worldwide and is constantly threatened by various biotic and abiotic stress factors reducing the quality and quantity in the production of this crop. As an alternative to mitigate stress in plants, carbon nanomaterials (CNMs) have been used in agricultural areas. Therefore, the objective of the present work was to evaluate the antioxidant responses of tomato seedlings to the application via foliar and drench of carbon nanotubes (CNTs) and graphene (GP). Different doses (10, 50, 100, 250, 500, and 1000 mg L-1) and a control were evaluated. The results showed that the fresh and dry root weight increased with the application of CNMs. Regarding the antioxidant responses of tomato seedlings, the application of CNMs increased the content of phenols, flavonoids, ascorbic acid, glutathione, photosynthetic pigments, activity of the enzyme's ascorbate peroxidase, glutathione peroxidase, catalase, and phenylalanine ammonia lyase as well as the content of proteins. Therefore, the use of carbon-based nanomaterials could be a good alternative to induce tolerance to different stress in tomato crop.


Asunto(s)
Antioxidantes/metabolismo , Grafito , Nanotubos de Carbono/química , Plantones/metabolismo , Solanum lycopersicum/metabolismo , Estrés Fisiológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Grafito/química , Grafito/farmacología
3.
Int J Mol Sci ; 20(1)2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30621162

RESUMEN

Biostimulants are materials that when applied in small amounts are capable of promoting plant growth. Nanoparticles (NPs) and nanomaterials (NMs) can be considered as biostimulants since, in specific ranges of concentration, generally in small levels, they increase plant growth. Pristine NPs and NMs have a high density of surface charges capable of unspecific interactions with the surface charges of the cell walls and membranes of plant cells. In the same way, functionalized NPs and NMs, and the NPs and NMs with a corona formed after the exposition to natural fluids such as water, soil solution, or the interior of organisms, present a high density of surface charges that interact with specific charged groups in cell surfaces. The magnitude of the interaction will depend on the materials adhered to the corona, but high-density charges located in a small volume cause an intense interaction capable of disturbing the density of surface charges of cell walls and membranes. The electrostatic disturbance can have an impact on the electrical potentials of the outer and inner surfaces, as well as on the transmembrane electrical potential, modifying the activity of the integral proteins of the membranes. The extension of the cellular response can range from biostimulation to cell death and will depend on the concentration, size, and the characteristics of the corona.


Asunto(s)
Nanopartículas , Nanoestructuras , Plantas/metabolismo , Equilibrio Ácido-Base , Cobre/metabolismo , Concentración de Iones de Hidrógeno , Membranas Intracelulares/metabolismo , Concentración Osmolar , Oxidación-Reducción , Corona de Proteínas/metabolismo , Electricidad Estática , Titanio/metabolismo
4.
Molecules ; 24(12)2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248198

RESUMEN

Sulfur is an essential element in determining the productivity and quality of agricultural products. It is also an element associated with tolerance to biotic and abiotic stress in plants. In agricultural practice, sulfur has broad use in the form of sulfate fertilizers and, to a lesser extent, as sulfite biostimulants. When used in the form of bulk elemental sulfur, or micro- or nano-sulfur, applied both to the soil and to the canopy, the element undergoes a series of changes in its oxidation state, produced by various intermediaries that apparently act as biostimulants and promoters of stress tolerance. The final result is sulfate S+6, which is the source of sulfur that all soil organisms assimilate and that plants absorb by their root cells. The changes in the oxidation states of sulfur S0 to S+6 depend on the action of specific groups of edaphic bacteria. In plant cells, S+6 sulfate is reduced to S-2 and incorporated into biological molecules. S-2 is also absorbed by stomata from H2S, COS, and other atmospheric sources. S-2 is the precursor of inorganic polysulfides, organic polysulfanes, and H2S, the action of which has been described in cell signaling and biostimulation in plants. S-2 is also the basis of essential biological molecules in signaling, metabolism, and stress tolerance, such as reactive sulfur species (RSS), SAM, glutathione, and phytochelatins. The present review describes the dynamics of sulfur in soil and plants, considering elemental sulfur as the starting point, and, as a final point, the sulfur accumulated as S-2 in biological structures. The factors that modify the behavior of the different components of the sulfur cycle in the soil-plant-atmosphere system, and how these influences the productivity, quality, and stress tolerance of crops, are described. The internal and external factors that influence the cellular production of S-2 and polysulfides vs. other S species are also described. The impact of elemental sulfur is compared with that of sulfates, in the context of proper soil management. The conclusion is that the use of elemental sulfur is recommended over that of sulfates, since it is beneficial for the soil microbiome, for productivity and nutritional quality of crops, and also allows the increased tolerance of plants to environmental stresses.


Asunto(s)
Productos Agrícolas/química , Productos Agrícolas/metabolismo , Sulfuro de Hidrógeno/química , Plantas/química , Plantas/metabolismo , Suelo/química , Azufre/química , Adaptación Biológica , Biotransformación , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/metabolismo , Redes y Vías Metabólicas , Valor Nutritivo , Oxidación-Reducción , Azufre/análisis , Azufre/metabolismo
5.
Molecules ; 24(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438533

RESUMEN

Nanotechnology represents an opportunity to improve the use of elements in agriculture. Selenium is an element that is beneficial to plants and essential to the human diet. The size of nanoparticles gives them characteristics that can enhance the benefits that selenium provides to plants. The objective of the present study was to determine the effects of selenium nanoparticles on the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Four doses of selenium nanoparticles (1, 5, 10, and 20 mg L-1) under NaCl stress, only NaCl, and a control were evaluated. The results showed that the impact of salinity on the growth of the tomato crop can be reduced with the application of selenium nanoparticles. However, the amount of both enzymatic and non-enzymatic compounds significantly increased in the leaves and fruits of tomato. The results suggest that the application of selenium nanoparticles generated a positive effect against salinity in the tomato crop; moreover, it had a positive impact on the content of beneficial biocompounds for human health in tomato fruits.


Asunto(s)
Antioxidantes/química , Frutas/química , Nanopartículas/química , Selenio/química , Solanum lycopersicum/química , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Frutas/efectos de los fármacos , Humanos , Licopeno/química , Solanum lycopersicum/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Cloruro de Sodio/farmacología , Superóxido Dismutasa/metabolismo , beta Caroteno/química
6.
Molecules ; 23(1)2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29337864

RESUMEN

Chitosan is a natural polymer, which has been used in agriculture to stimulate crop growth. Furthermore, it has been used for the encapsulation of nanoparticles in order to obtain controlled release. In this work, the effect of chitosan-PVA and Cu nanoparticles (Cu NPs) absorbed on chitosan-PVA on growth, antioxidant capacity, mineral content, and saline stress in tomato plants was evaluated. The results show that treatments with chitosan-PVA increased tomato growth. Furthermore, chitosan-PVA increased the content of chlorophylls a and b, total chlorophylls, carotenoids, and superoxide dismutase. When chitosan-PVA was mixed with Cu NPs, the mechanism of enzymatic defense of tomato plants was activated. The chitosan-PVA and chitosan-PVA + Cu NPs increased the content of vitamin C and lycopene, respectively. The application of chitosan-PVA and Cu NPs might induce mechanisms of tolerance to salinity.


Asunto(s)
Antioxidantes/metabolismo , Quitosano/química , Cobre/química , Nanopartículas del Metal , Salinidad , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Estrés Fisiológico , Clorofila/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Minerales/metabolismo , Fitoquímicos/química , Pigmentos Biológicos , Hojas de la Planta , Especies Reactivas de Oxígeno
7.
Molecules ; 22(4)2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358332

RESUMEN

Selenium is an element that must be considered in the nutrition of certain crops since its use allows the obtaining of biofortified crops with a positive impact on human health. The objective of this review is to present the information on the use of Se and S in the cultivation of plants of the genus Allium. The main proposal is to use Allium as specialist plants for biofortification with Se and S, considering the natural ability to accumulate both elements in different phytochemicals, which promotes the functional value of Allium. In spite of this, in the agricultural production of these species, the addition of sulfur is not realized to obtain functional foods and plants more resistant; it is only sought to cover the necessary requirements for growth. On the other hand, selenium does not appear in the agronomic management plans of most of the producers. Including S and Se fertilization as part of agronomic management can substantially improve Allium crop production. Allium species may be suitable to carry out biofortification with Se; this practice can be combined with the intensive use of S to obtain crops with higher production and sensory, nutritional, and functional quality.


Asunto(s)
Allium/crecimiento & desarrollo , Biofortificación , Selenio , Azufre , Allium/efectos de los fármacos , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes
8.
Plants (Basel) ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674545

RESUMEN

The application of natural polymer-based coatings presents a viable approach to prolong the longevity of fruits and tissue damage. This study investigates the impact of treatments involving glycine betaine (GB), chitosan (CTS), and chitosan-coated glycine betaine nanoparticles (CTS-GB NPs) on preserving the quality and reducing decay in strawberry fruits. The fruits were subjected to treatments with GB (1 mM), CTS (0.1%), CTS-GB NPs (0.1%), or distilled water at 20 °C for 5 min, followed by storage at 4 °C for 12 days. The results indicate that CTS and CTS-GB NPs treatments resulted in the highest tissue firmness, total anthocyanin content, and ascorbate peroxidase activity, while exhibiting the lowest decay percentage and weight loss, as well as reduced malondialdehyde levels at the end of storage. GB, CTS, and CTS-GB NPs treatments demonstrated elevated catalase activity and antioxidant capacity, coupled with lower electrolyte leakage and hydrogen peroxide levels. These treatments did not significantly differ from each other but were markedly different from the control. The results substantiate that CTS and CTS-GB NPs treatments effectively preserve strawberry quality and extend storage life by bolstering antioxidant capacity and mitigating free radical damage.

9.
PeerJ ; 12: e16666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188144

RESUMEN

Background: Fungal diseases can cause significant losses in the tomato crop. Phytophthora infestans causes the late blight disease, which considerably affects tomato production worldwide. Weed-based plant extracts are a promising ecological alternative for disease control. Methods: In this study, we analyzed the plant extract of Argemone mexicana L. using chromatography-mass spectrometry analysis (GC-MS). We evaluated its impact on the severity of P. infestans, as well as its effect on the components of the antioxidant defense system in tomato plants. Results: The extract from A. mexicana contains twelve compounds most have antifungal and biostimulant properties. The findings of the study indicate that applying the A. mexicana extract can reduce the severity of P. infestans, increase tomato fruit yield, enhance the levels of photosynthetic pigments, ascorbic acid, phenols, and flavonoids, as well as decrease the biosynthesis of H2O2, malondialdehyde (MDA), and superoxide anion in the leaves of plants infected with this pathogen. These results suggest that using the extract from A. mexicana could be a viable solution to control the disease caused by P. infestans in tomato crop.


Asunto(s)
Argemone , Phytophthora infestans , Solanum lycopersicum , Peróxido de Hidrógeno , Extractos Vegetales/farmacología
10.
Antioxidants (Basel) ; 12(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371995

RESUMEN

The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting as antioxidants and antiproliferatives, and their limited intake through food consumption can cause malnutrition, reflected in the abnormal development and growth of humans. This research aimed to evaluate the nutraceutical quality of tomato (Solanum lycopersicum L.) in response to seed priming based on KIO3 (0, 100, 150, 200, 250 mg L-1) and Na2SeO3 (0, 0.5, 1, 2, 3 mg L-1), performed by interaction from a 52-factorial design and by independent factors in a 24-h imbibition time. The tomato crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v). Regarding non-enzymatic antioxidant compounds, lycopene, ß-carotene and flavonoid contents in tomato fruits significantly increased with KIO3 and Na2SeO3 treatments; however, vitamin C content was negatively affected. KIO3 increased the phenol and chlorophyll-a contents of leaves. In relation to enzymatic activity, KIO3 positively influenced GSH content and PAL activity in tomato fruits. KIO3 also positively influenced GSH content in leaves while negatively affecting PAL and APX activities. Na2SeO3 favored GSH content and GPX activity in tomato fruits and leaves. Na2SeO3 negatively affected the antioxidant capacity of hydrophilic compounds by ABTS in fruits and leaves and favored hydrophilic compounds by DPPH in leaves. Seed imbibition based on KIO3 and Na2SeO3 is a method that is implemented in the tomato crop and presents interesting aspects that favor the nutraceutical quality of tomato fruits, which may contribute to increasing the intake of these minerals in humans through tomato consumption.

11.
Plants (Basel) ; 12(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37375895

RESUMEN

The tomato crop is susceptible to various types of stress, both biotic and abiotic, which affect the morphology, physiology, biochemistry, and genetic regulation of plants. Among the biotic factors, is the phytopathogen Fusarium oxysporum f. sp. lycopersici (Fol), which can cause losses of up to 100%. Graphene-Cu nanocomposites have emerged as a potential alternative for pathogen control, thanks to their antimicrobial activity and their ability to induce the activation of the antioxidant defense system in plants. In the present study, the effect of the Graphene-Cu nanocomposites and the functionalization of graphene in the tomato crop inoculated with Fol was evaluated, analyzing their impacts on the antioxidant defense system, the foliar water potential (Ψh), and the efficiency of photosystem II (PSII). The results demonstrated multiple positive effects; in particular, the Graphene-Cu nanocomposite managed to delay the incidence of the "vascular wilt" disease and reduce the severity by 29.0%. This translated into an increase in the content of photosynthetic pigments and an increase in fruit production compared with Fol. In addition, the antioxidant system of the plants was improved, increasing the content of glutathione, flavonoids, and anthocyanins, and the activity of the GPX, PAL, and CAT enzymes. Regarding the impact on the water potential and the efficiency of the PSII, the plants inoculated with Fol and treated with the Graphene-Cu nanocomposite responded better to biotic stress compared with Fol, reducing water potential by up to 31.7% and Fv/Fm levels by 32.0%.

12.
Heliyon ; 9(1): e12787, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36647345

RESUMEN

Zn is an indispensable nutrient for crops that usually presents low bioavailability. Different techniques have been proposed to improve the bioavailability of Zn, including the use of nanofertilizers. The objective of the study was to evaluate the applications of drench (D) and foliar (F) ZnO nanoparticles (NZnO) compared to those of ionic Zn2+ (ZnSO4) in lettuce. The plants cv. Great Lakes 407 was produced in pots of 4 L with perlite-peat moss (1:1) under greenhouse conditions. The treatments consisted of NZnO applications that replaced the total Zn provided with a Steiner solution, as follows: Zn2+ (100%D) (control); Zn2+ (50%D+50%F); NZnO (100%D); NZnO (50%D+50%F); NZnO (75%D); NZnO (50%D); NZnO (75%F) and NZnO (50%F). Four applications of Zn were made with a frequency of 15 days. 75 days after transplant (DAP), the fresh and dry biomass, chlorophyll a, b, and ß-carotene, phenolics, flavonoids, antioxidant capacity, vitamin C, glutathione, H2O2, total protein, and enzymatic activity of PAL, CAT, APX, and GPX were evaluated. The mineral concentrations (N, P, K, Ca, Mg, S, Cu, Fe, Mn, Mo, Zn, Ni, and Si) in the leaves and roots of plants were also determined. The results showed that, compared to Zn2+, NZnO promoted increases in biomass (14-52%), chlorophylls (32-69%), and antioxidant compounds such as phenolics, flavonoids, and vitamin C. The activity of enzymes like CAT and APX, as well as the foliar concentration of Ca, Mg, S, Fe, Mn, Zn, and Si increased with NZnO. A better response was found in the plants for most variables with foliar applications of NZnO equivalent to 50-75% of the total Zn2+ applied conventionally. These results demonstrate that total replacement of Zn2+ with NZnO is possible, promoting fertilizer efficiency and the nutraceutical quality of lettuce.

13.
Environ Sci Pollut Res Int ; 29(23): 34147-34163, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35034295

RESUMEN

In this study, we simulate the irrigation of tomato plants with arsenic (As)-contaminated water (from 0 to 3.2 mg L-1) and investigate the effect of the application of silicon nanoparticle (Si NPs) in the form of silicon dioxide (0, 250, and 1000 mg L-1) on As uptake and stress. Arsenic concentrations were determined in substrate and plant tissue at three different stratums. Phytotoxicity, As accumulation and translocation, photosynthetic pigments, and antioxidant activity of enzymatic and non-enzymatic compounds were also determined. Our results show that irrigation of tomato plants with As-contaminated water caused As substrate enrichment and As bioaccumulation (roots > leaves > steam), showing that the higher the concentration in irrigation water, the farther As translocated through the different tomato stratums. Additionally, phytotoxicity was observed at low concentrations of As, while tomato yield increased at high concentrations of As. We found that application of Si NPs decreased As translocation, tomato yield, and root biomass. Increased production of photosynthetic pigments and improved enzymatic activity (CAT and APX) suggested tomato plant adaptation at high As concentrations in the presence of Si NPs. Our results reveal likely impacts of As and nanoparticles on tomato production in places where As in groundwater is common and might represent a risk.


Asunto(s)
Arsénico , Nanopartículas , Solanum lycopersicum , Antioxidantes/análisis , Arsénico/análisis , Arsénico/toxicidad , Nanopartículas/toxicidad , Hojas de la Planta , Raíces de Plantas/química , Agua/análisis
14.
Plants (Basel) ; 11(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36559576

RESUMEN

The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response-called induction or elicitation-with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000-2022 is organized according to the biostimulant's physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary.

15.
Plants (Basel) ; 11(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956461

RESUMEN

The consumption of food with a high content of bioactive compounds is correlated with the prevention of chronic degenerative diseases. Tomato is a food with exceptional nutraceutical value; however, saline stress severely affects the yield, the quality of fruits, and the agricultural productivity of this crop. Recent studies have shown that seed priming can mitigate or alleviate the negative effects caused by this type of stress. However, the use of carbon nanomaterials (CNMs) in this technique has not been tested for this purpose. In the present study, the effects of tomato seed priming with carbon nanotubes (CNTs) and graphene (GP) (50, 250, and 500 mg L-1) and two controls (not sonicated and sonicated) were evaluated based on the content of photosynthetic pigments in the leaves; the physicochemical parameters of the fruits; and the presence of enzymatic and non-enzymatic antioxidant compounds, carotenoids, and stress biomarkers such as hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves and fruits of tomato plants without saline stress and with saline stress (50 mM NaCl). The results show that saline stress in combination with CNTs and GP increased the content of chlorophylls (9.1-21.7%), ascorbic acid (19.5%), glutathione (≈13%), proteins (9.9-11.9%), and phenols (14.2%) on the leaves. The addition of CNTs and GP increased the activity of enzymes (CAT, APX, GPX, and PAL). Likewise, there was also a slight increase in the content of H2O2 (by 20.5%) and MDA (3.7%) in the leaves. Salinity affected the quality of tomato fruits. The physico-chemical parameters and bioactive compounds in both the stressed and non-stressed tomato plants were modified with the addition of CNTs and GP. Higher contents of total soluble solids (25.9%), phenols (up to 144.85%), flavonoids (up to 37.63%), ascorbic acid (≈28%), and lycopene (12.4-36.2%) were observed. The addition of carbon nanomaterials by seed priming in tomato plants subjected to saline stress modifies the content of bioactive compounds in tomato fruits and improves the antioxidant defense system, suggesting possible protection of the plant from the negative impacts of stress by salinity. However, analysis of the mechanism of action of CNMs through seed priming, in greater depth is suggested, perhaps with the use of omics sciences.

16.
J Adv Res ; 31: 113-126, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194836

RESUMEN

Background: Biostimulation and toxicity constitute the continuous response spectrum of a biological organism against physicochemical or biological factors. Among the environmental agents capable of inducing biostimulation or toxicity are nanomaterials. On the < 100 nm scale, nanomaterials impose both physical effects resulting from the core's and corona's surface properties, and chemical effects related to the core's composition and the corona's functional groups. Aim of Review: The purpose of this review is to describe the impact of nanomaterials on microorganisms and plants, considering two of the most studied physical and chemical properties: size and concentration. Key Scientific Concepts of Review: Using a graphical analysis, the presence of a continuous biostimulation-toxicity spectrum is shown considering different biological responses. In microorganisms, the results showed high susceptibility to nanomaterials. Simultaneously, in plants, a hormetic response was found related to nanomaterials concentration and, in a few cases, a positive response in the smaller nanomaterials when these were applied at a higher level. With the above, it is concluded that: (1) microorganisms are more susceptible to nanomaterials than plants, (2) practically all nanomaterials seem to induce responses from biostimulation to toxicity in plants, and (3) the kind of response observed will depend in a complex way on the nanomaterials physical and chemical characteristics, of the biological species with which they interact, and of the form and route of application and on the nature of the medium -soil, soil pore water, and biological surfaces- where the interaction occurs.


Asunto(s)
Bacterias/metabolismo , Nanoestructuras/química , Nanoestructuras/toxicidad , Plantas/metabolismo , Bacterias/efectos de los fármacos , Fenómenos Biológicos , Hormesis , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno , Suelo , Microbiología del Suelo , Propiedades de Superficie , Agua
17.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34578605

RESUMEN

The production and sustainability of grape berries with high quality and health-promoting properties is a major goal. In this regard, nano-engineered materials are being used for improving the quality and marketability of berries. In this study, we investigated the potential role of chitosan-phenylalanine nanocomposites (CS-Phe NCs) in improving the quality of Flame Seedless (Vitis vinifera L.) grape berries, such as titratable acidity (TA), pH, total soluble solids (TSS), ascorbic acid, total phenolics, total flavonoids, anthocyanin, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity, and phenylalanine ammonia-lyase (PAL) activity. In this context, grape berries collected in two growing seasons (2018-2019) were screened. Regarding the experimental design, the treatments included chitosan at a 0.5% concentration (CS 0.5%), phenylalanine at 5 mM and 10 mM concentrations (Phe 5 mM and Phe 10 mM), and chitosan-phenylalanine nanocomposites (CS-Phe NCs) at 5 mM and 10 mM concentrations. The lowest TA was recorded in grape berries treated with CS-Phe NCs with a 10 mM concentration. However, treatments enhanced with TSS, which reached the highest value with 10 mM of CS-Phe NCs, were reflected as the highest ratio of TSS/TA with 10 mM of CS-Phe NC treatment. Nanocomposites (NCs) also increased pH values in both study years compared to the control. Similarly, the ascorbic acid and total phenolic content increased in response to NP treatment, reaching the highest value with 5 mM and 10 mM of CS-Phe NCs in 2018 and 2019, respectively. The highest flavonoid content was observed with 5 mM of CS-Phe NCs in both study years. In addition, the anthocyanin content increased with 5 and 10 mM of CS-Phe NCs. PAL activity was found to be the highest with 5 mM of CS-Phe NCs in both study years. In addition, in accordance with the increase in PAL activity, increased total phenolics and anthocyanin, and higher DPPH radical scavenging activity of the grapes were recorded with the treatments compared to the control. As deduced from the findings, the coating substantially influenced the metabolic pathway, and the subsequent alterations induced by the treatments were notably appreciated due to there being no adverse impacts perceived.

18.
Plants (Basel) ; 10(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34961264

RESUMEN

The objective of this experiment was to evaluate the effects of grafting, zinc oxide nanoparticles (ZnO NPs), and their interaction on the nutritional composition of bell pepper plants. The treatments evaluated included grafted and non-grafted pepper plants with four concentrations of ZnO NPs (0, 10, 20, 30 mg L-1) applied to the foliage. The following parameters were evaluated: content of N, P, K+, Ca2+, Mg2+, Mn2+, Zn2+, Fe2+, Cu2+, total antioxidants, ascorbic acid, total phenols, glutathione, total proteins, fruit firmness, and total soluble solids. Grafting increased the content of N 12.2%, P 15.9%, K+ 26.7%, Mg2+ 20.3%, Mn2+ 34.7%, Zn2+ 19.5%, Fe2+ 18.2%, Cu2+ 11.5%, antioxidant capacity 2.44%, ascorbic acid 4.63%, total phenols 1.33%, glutathione 7.18%, total proteins 1.08%, fruit firmness 8.8%. The application of 30 mg L-1 ZnO NPs increased the content of N 12.3%, P 25.9%, Mg2+ 36.8%, Mn2+ 42.2%, Zn2+ 27%, Fe2+ 45%, antioxidant activity 13.95%, ascorbic acid 26.77%, total phenols 10.93%, glutathione 11.46%, total proteins 11.01%, and fruit firmness 17.7% compared to the control. The results obtained demonstrate the influence of the use of grafts and ZnO NPs as tools that could improve the quality and nutrient content in fruits of bell pepper crops.

19.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922093

RESUMEN

The diseases that attack the tomato crop are a limiting factor for its production and are difficult to control or eradicate. Stem and fruit rot and leaf blight caused by Alternaria solani causes severe damage and substantial yield losses. Carbon nanotubes (CNTs) could be an alternative for the control of pathogens since they have strong antimicrobial activity, in addition to inducing the activation of the antioxidant defense system in plants. In the present study, multi-walled carbon nanotubes were evaluated on the incidence and severity of A. solani. Moreover, to the impact they have on the antioxidant defense system and the photosynthetic capacity of the tomato crop. The results show that the application of CNTs had multiple positive effects on tomato crop. CNTs decreased the incidence and severity of A. solani. Furthermore, CNTs increased the fruit yield of tomato crop and dry shoot biomass. The antioxidant system was improved, since the content of ascorbic acid, flavonoids, and the activity of the glutathione peroxidase enzyme were increased. The net photosynthesis and water use efficiency were also increased by the application of CNTs. CNTs can be an option to control A. solani in tomato crop, and diminish the negative impact of this pathogen.

20.
Front Genet ; 12: 583888, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613631

RESUMEN

Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA