Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2217451120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155854

RESUMEN

Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , Virus , Antivirales/metabolismo , Membrana Celular/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Virus/metabolismo , Humanos
2.
Mol Cell ; 60(6): 899-913, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687599

RESUMEN

Starvation-induced autophagy requires activation of the ULK complex at the phagophore. Two Golgi proteins, WAC and GM130, regulate autophagy, however their mechanism of regulation is unknown. In search of novel interaction partners of WAC, we found that GM130 directly interacts with WAC, and this interaction is required for autophagy. WAC is bound to the Golgi by GM130. WAC and GM130 interact with the Atg8 homolog GABARAP and regulate its subcellular localization. GABARAP is on the pericentriolar matrix, and this dynamic pool contributes to autophagosome formation. Tethering of GABARAP to the Golgi by GM130 inhibits autophagy, demonstrating an unexpected role for a golgin. WAC suppresses GM130 binding to GABARAP, regulating starvation-induced centrosomal GABARAP delivery to the phagophore. GABARAP, unlipidated and lipidated, but not LC3B, GABARAPL1, and GATE-16, specifically promotes ULK kinase activation dependent on the ULK1 LIR motif, elucidating a unique non-hierarchical role for GABARAP in starvation-induced activation of autophagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/metabolismo , Centrosoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Autofagia , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ratones , Transporte de Proteínas
3.
EMBO J ; 35(3): 281-301, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26711178

RESUMEN

Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain-containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11-positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi-subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N-terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy-specific TRAPP subunit, forms part of a mammalian TRAPPIII-like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy.


Asunto(s)
Autofagia , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia , Línea Celular , Vesículas Citoplasmáticas/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas de Unión al GTP rab1/metabolismo
4.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867316

RESUMEN

HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+ T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu's ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64 and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCE HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu's ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.


Asunto(s)
Membrana Celular/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Macrófagos/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antígenos CD/metabolismo , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Citoplasma/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Proteína p24 del Núcleo del VIH/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/inmunología , VIH-1/metabolismo , VIH-1/patogenicidad , Células HeLa , Proteínas del Virus de la Inmunodeficiencia Humana/fisiología , Humanos , Macrófagos/virología , Proteínas Reguladoras y Accesorias Virales/fisiología , Virión/metabolismo , Ensamble de Virus/fisiología , Liberación del Virus/fisiología
5.
BMC Biol ; 15(1): 102, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089042

RESUMEN

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Asunto(s)
Ciclo Celular , Metabolismo de los Lípidos , Biogénesis de Organelos , Transporte Biológico , Membrana Celular/metabolismo
6.
EMBO Rep ; 14(6): 534-44, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23619093

RESUMEN

Chikungunya virus (CHIKV) is a recently re-emerged arbovirus that triggers autophagy. Here, we show that CHIKV interacts with components of the autophagy machinery during its replication cycle, inducing a cytoprotective effect. The autophagy receptor p62 protects cells from death by binding ubiquitinated capsid and targeting it to autophagolysosomes. By contrast, the human autophagy receptor NDP52--but not its mouse orthologue--interacts with the non-structural protein nsP2, thereby promoting viral replication. These results highlight the distinct roles of p62 and NDP52 in viral infection, and identify NDP52 as a cellular factor that accounts for CHIKV species specificity.


Asunto(s)
Infecciones por Alphavirus/virología , Autofagia , Virus Chikungunya/fisiología , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cápside/metabolismo , Fiebre Chikungunya , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fagosomas/metabolismo , Fagosomas/virología , Unión Proteica , Transporte de Proteínas , Proteína Sequestosoma-1 , Sirolimus/farmacología , Especificidad de la Especie , Proteínas no Estructurales Virales/metabolismo
7.
PLoS Pathog ; 8(5): e1002708, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615568

RESUMEN

Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection.


Asunto(s)
Infecciones por Alphavirus/inmunología , Virus Chikungunya/inmunología , Interferón beta/biosíntesis , Proteína Fosfatasa 1/metabolismo , ARN Bicatenario/inmunología , Células 3T3 , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular , Fiebre Chikungunya , Fibroblastos/inmunología , Fibroblastos/virología , Interferón Tipo I/biosíntesis , Interleucina-6/biosíntesis , Ratones , Poli I-C/inmunología , Proteína Fosfatasa 1/biosíntesis , Proteína Fosfatasa 1/genética , Tapsigargina/inmunología , Respuesta de Proteína Desplegada , eIF-2 Quinasa/biosíntesis , eIF-2 Quinasa/metabolismo
8.
Nat Commun ; 15(1): 4023, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740816

RESUMEN

Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.


Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte , N-Metiltransferasa de Histona-Lisina , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , VIH-1/metabolismo , VIH-1/genética , VIH-1/fisiología , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional
9.
Nat Commun ; 15(1): 640, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245532

RESUMEN

Considerable progress has been made in understanding the molecular host-virus battlefield during SARS-CoV-2 infection. Nevertheless, the assembly and egress of newly formed virions are less understood. To identify host proteins involved in viral morphogenesis, we characterize the proteome of SARS-CoV-2 virions produced from A549-ACE2 and Calu-3 cells, isolated via ultracentrifugation on sucrose cushion or by ACE-2 affinity capture. Bioinformatic analysis unveils 92 SARS-CoV-2 virion-associated host factors, providing a valuable resource to better understand the molecular environment of virion production. We reveal that G3BP1 and G3BP2 (G3BP1/2), two major stress granule nucleators, are embedded within virions and unexpectedly favor virion production. Furthermore, we show that G3BP1/2 participate in the formation of cytoplasmic membrane vesicles, that are likely virion assembly sites, consistent with a proviral role of G3BP1/2 in SARS-CoV-2 dissemination. Altogether, these findings provide new insights into host factors required for SARS-CoV-2 assembly with potential implications for future therapeutic targeting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Replicación Viral , ADN Helicasas/metabolismo , Proteómica , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , COVID-19/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Ensamble de Virus , Virión/metabolismo
10.
J Virol ; 86(6): 3121-34, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22258240

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus.


Asunto(s)
Infecciones por Alphavirus/metabolismo , Infecciones por Alphavirus/virología , Virus Chikungunya/metabolismo , Interacciones Huésped-Patógeno , Mapas de Interacción de Proteínas , Proteínas no Estructurales Virales/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Fiebre Chikungunya , Virus Chikungunya/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas no Estructurales Virales/genética
11.
Autophagy ; : 1-3, 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424095

RESUMEN

Understanding how viruses evade innate defenses to efficiently spread in their hosts is crucial in the fight against infections. In our study, we provided new insights on the first step initiating an LC3C (microtubule associated protein 1 light chain 3 gamma)-associated degradative pathway exploited by HIV-1 (human immunodeficiency virus type 1) to overcome the antiviral action of the restriction factor BST2 (bone marrow stromal cell antigen 2)/tetherin. We have uncovered an unsuspected and unconventional function of the autophagy-related protein ATG5 in the recognition and engagement of BST2 molecules trapping viruses at the plasma membrane, and directing them toward this LC3C-associated pathway for degradation. Additionally, we highlighted that HIV-1 uses this LC3C-associated process to attenuate the inflammatory responses triggered by BST2-mediated sensing of viruses.

12.
Comput Struct Biotechnol J ; 20: 3604-3614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860415

RESUMEN

Cellular membranes are formed from different lipids in various amounts and proportions depending on the subcellular localization. The lipid composition of membranes is sensitive to changes in the cellular environment, and its alterations are linked to several diseases. Lipids not only form lipid-lipid interactions but also interact with other biomolecules, including proteins. Molecular dynamics (MD) simulations are a powerful tool to study the properties of cellular membranes and membrane-protein interactions on different timescales and resolutions. Over the last few years, software and hardware for biomolecular simulations have been optimized to routinely run long simulations of large and complex biological systems. On the other hand, high-throughput techniques based on lipidomics provide accurate estimates of the composition of cellular membranes at the level of subcellular compartments. Lipidomic data can be analyzed to design biologically relevant models of membranes for MD simulations. Similar applications easily result in a massive amount of simulation data where the bottleneck becomes the analysis of the data. In this context, we developed LipidDyn, a Python-based pipeline to streamline the analyses of MD simulations of membranes of different compositions. Once the simulations are collected, LipidDyn provides average properties and time series for several membrane properties such as area per lipid, thickness, order parameters, diffusion motions, lipid density, and lipid enrichment/depletion. The calculations exploit parallelization, and the pipeline includes graphical outputs in a publication-ready form. We applied LipidDyn to different case studies to illustrate its potential, including membranes from cellular compartments and transmembrane protein domains. LipidDyn is available free of charge under the GNU General Public License from https://github.com/ELELAB/LipidDyn.

13.
Autophagy ; 15(9): 1660-1661, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31204568

RESUMEN

The identity of the platform supporting the initiation and formation of the nascent autophagosome, the phagophore, is not fully understood. Nucleation and expansion of the phagophore membrane requires a coordinated flux or activation of specific proteins and membrane lipids at the initiation site. The transmembrane protein ATG9A is essential for macroautophagy/autophagy and proposed to be an initiator of the phagophore by directing or facilitating the delivery of proteins and lipids to the initiation site. Upon amino acid starvation, ATG9A-containing vesicles are formed from the Golgi complex and endosomal compartments and translocate to the initiation site. Unravelling the complement of proteins and lipids brought by ATG9A vesicles to the forming autophagosome is essential to further understand the initiation of autophagy.


Asunto(s)
Autofagosomas , Autofagia , Proteínas Relacionadas con la Autofagia , Fosfatos de Fosfatidilinositol
15.
J Cell Biol ; 218(5): 1634-1652, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30917996

RESUMEN

ATG9A is a multispanning membrane protein essential for autophagy. Normally resident in Golgi membranes and endosomes, during amino acid starvation, ATG9A traffics to sites of autophagosome formation. ATG9A is not incorporated into autophagosomes but is proposed to supply so-far-unidentified proteins and lipids to the autophagosome. To address this function of ATG9A, a quantitative analysis of ATG9A-positive compartments immunoisolated from amino acid-starved cells was performed. These ATG9A vesicles are depleted of Golgi proteins and enriched in BAR-domain containing proteins, Arfaptins, and phosphoinositide-metabolizing enzymes. Arfaptin2 regulates the starvation-dependent distribution of ATG9A vesicles, and these ATG9A vesicles deliver the PI4-kinase, PI4KIIIß, to the autophagosome initiation site. PI4KIIIß interacts with ATG9A and ATG13 to control PI4P production at the initiation membrane site and the autophagic response. PI4KIIIß and PI4P likely function by recruiting the ULK1/2 initiation kinase complex subunit ATG13 to nascent autophagosomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética
16.
Curr Biol ; 27(14): 2123-2136.e7, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28712572

RESUMEN

Autophagy maintains cellular health and homeostasis during stress by delivering cytosolic material captured by autophagosomes to lysosomes for degradation. Autophagosome formation is complex: initiated by the recruitment of autophagy (Atg) proteins to the formation site, it is sustained by activation of Atg proteins to allow growth and closure of the autophagosome. How Atg proteins are translocated to the forming autophagosome is not fully understood. Transport of the ATG8 family member GABARAP from the centrosome occurs during starvation-induced autophagosome biogenesis, but how centrosomal proteins regulate GABARAP localization is unknown. We show that the centriolar satellite protein PCM1 regulates the recruitment of GABARAP to the pericentriolar material. In addition to residing on the pericentriolar material, GABARAP marks a subtype of PCM1-positive centriolar satellites. GABARAP, but not another ATG8 family member LC3B, binds directly to PCM1 through a canonical LIR motif. Loss of PCM1 results in destabilization of GABARAP, but not LC3B, through proteasomal degradation. GABARAP instability is mediated through the centriolar satellite E3 ligase Mib1, which interacts with GABARAP through its substrate-binding region and promotes K48-linked ubiquitination of GABARAP. Ubiquitination of GABARAP occurs in the N terminus, a domain associated with ATG8-family-specific functions during autophagosome formation, on residues absent in the LC3 family. Furthermore, PCM1-GABARAP-positive centriolar satellites colocalize with forming autophagosomes. PCM1 enhances GABARAP/WIPI2/p62-positive autophagosome formation and flux but has no significant effect on LC3B-positive autophagosome formation. These data suggest a mechanism for how centriolar satellites can specifically regulate an ATG8 ortholog, the centrosomal GABARAP reservoir, and centrosome-autophagosome crosstalk.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Centriolos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Ubiquitinación , Proteínas Reguladoras de la Apoptosis , Células HEK293 , Humanos
17.
Methods Mol Biol ; 1270: 155-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25702116

RESUMEN

Autophagy (self-eating) is a highly conserved, vesicular pathway that cells use to eat pieces of themselves, including damaged organelles, protein aggregates or invading pathogens, for self-preservation and survival (Choi et al., N Engl J Med 368:651-662, 2013; Lamb et al., Nat Rev Mol Cell Biol 14:759-774, 2013). Autophagy can be delineated into three major vesicular compartments (the phagophore, autophagosome, autolysosome, see Fig. 1). The initial stages of the pathway involve the formation of phagophores (also called isolation membranes), which are open, cup-shaped membranes that expand and sequester the cytosolic components, including organelles and aggregated proteins or intracellular pathogens. Closure of the phagophore creates an autophagosome, which is a double-membrane vesicle. Fusion of the autophagosome with the lysosome, to form an autolysosome, delivers the content of the autophagosome into the lysosomal lumen and allows degradation to occur.Autophagy is a dynamic process that is initiated within 15 min of amino acid starvation in cell culture systems (Köchl et al., Traffic 7:129-145, 2006) and is likely to occur as rapidly in vivo (Mizushima et al., J Cell Biol 152:657-668, 2001). To initiate studies on the formation of the autophagosomes, and trafficking to and from the autophagic pathway, an ideal starting approach is to do a morphological analysis in fixed cells. Additional validation of the morphological data can be obtained using simple Western blot analysis. Here we describe the most commonly used morphological technique to study autophagy, in particular, using the most reliable marker, microtubule-associated protein 1A/1B-light chain 3 (LC3). In addition, we describe a second immunofluorescence assay to determine if autophagy is being induced, using an antibody to WD repeat domain, phosphoinositide interacting 2 (WIPI2), an effector of the phosphatidylinositol (3)-phosphate (PI3P) produced during autophagosome formation.


Asunto(s)
Autofagia/fisiología , Animales , Western Blotting , Humanos , Lisosomas/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA