Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Sci Technol ; 54(18): 11453-11463, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786341

RESUMEN

When rainwater harvesting is utilized as an alternative water resource in buildings, a combination of municipal water and rainwater is typically required to meet water demands. Altering source water chemistry can disrupt pipe scale and biofilm and negatively impact water quality at the distribution level. Still, it is unknown if similar reactions occur within building plumbing following a transition in source water quality. The goal of this study was to investigate changes in water chemistry and microbiology at a green building following a transition between municipal water and rainwater. We monitored water chemistry (metals, alkalinity, and disinfectant byproducts) and microbiology (total cell counts, plate counts, and opportunistic pathogen gene markers) throughout two source water transitions. Several constituents including alkalinity and disinfectant byproducts served as indicators of municipal water remaining in the system since the rainwater source does not contain these constituents. In the treated rainwater, microbial proliferation and Legionella spp. gene copy numbers were often three logs higher than those in municipal water. Because of differences in source water chemistry, rainwater and municipal water uniquely interacted with building plumbing and generated distinctively different drinking water chemical and microbial quality profiles.


Asunto(s)
Agua Potable , Legionella , Agua Potable/análisis , Lluvia , Agua , Microbiología del Agua , Calidad del Agua , Abastecimiento de Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-26327299

RESUMEN

Wastewater generated during food processing is commonly treated using land-application systems which primarily rely on soil microbes to transform nutrients and organic compounds into benign byproducts. Naturally occurring metals in the soil may be chemically reduced via microbially mediated oxidation-reduction reactions as oxygen becomes depleted. Some metals such as manganese and iron become water soluble when chemically reduced, leading to groundwater contamination. Alternatively, metals within the wastewater may not become assimilated into the soil and leach into the groundwater if the environment is not sufficiently oxidizing. A lab-scale column study was conducted to investigate the impacts of wastewater loading values on metal mobilization within the soil. Oxygen content and volumetric water data were collected via soil sensors for the duration of the study. The pH, chemical oxygen demand, manganese, and iron concentrations in the influent and effluent water from each column were measured. Average organic loading and organic loading per dose were shown to have statistically significant impacts using Spearman's Rank Correlation Coefficient on effluent water quality. The Hydraulic resting period qualitatively appeared to have impacts on effluent water quality. This study verifies that excessive organic loading of land application systems causes mobilization of naturally occurring metals and prevents those added in the wastewater from becoming immobilized, resulting in ineffective wastewater treatment. Results also indicate the need to consider the organic dose load and hydraulic resting period in the treatment system design. Findings from this study demonstrate waste application twice daily may encourage soil aeration and allow for increased organic loading while limiting the mobilization of metals already in the soil and those being applied.


Asunto(s)
Manipulación de Alimentos/métodos , Metales/química , Suelo/química , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Concentración de Iones de Hidrógeno , Compuestos Orgánicos , Contaminantes del Suelo/análisis , Eliminación de Residuos Líquidos/métodos , Agua/química
4.
J Vis Exp ; (184)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35815999

RESUMEN

Identification and isolation of contagious individuals along with quarantine of close contacts, is critical for slowing the spread of COVID-19. Large-scale testing in a surveillance or screening capacity for asymptomatic carriers of COVID-19 provides both data on viral spread and the follow-up ability to rapidly test individuals during suspected outbreaks. The COVID-19 early detection program at Michigan State University has been utilizing large-scale testing in a surveillance or screening capacity since fall of 2020. The methods adapted here take advantage of the reliability, large sample volume, and self-collection benefits of saliva, paired with a cost-effective, reagent conserving two-dimensional pooling scheme. The process was designed to be adaptable to supply shortages, with many components of the kits and the assay easily substituted. The processes outlined for collecting and processing SARS-CoV-2 samples can be adapted to test for future viral pathogens reliably expressed in saliva. By providing this blueprint for universities or other organizations, preparedness plans for future viral outbreaks can be developed.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Reproducibilidad de los Resultados , Saliva , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA