Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39204886

RESUMEN

To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving system is essential to adapt to various environmental changes. This paper aims to perform vehicle pose estimation, a crucial element in forming autonomous driving systems, more universally and robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging objects registered in a high-precision map. The proposed approach involves creating a semantic high-definition (HD) map with added objects, forming object-centric features, recognizing locations using these features, and accurately estimating the vehicle's pose from the recognized location. This proposed method enhances the precision of vehicle pose estimation in environments where acquiring RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper demonstrates the proposed method's effectiveness through simulation and real-world experiments, showcasing its capability for more precise pose estimation.

2.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686466

RESUMEN

All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.


Asunto(s)
Ciclinas , Oocitos , Animales , Ratones , Ciclo Celular , División Celular , Células Eucariotas , Quinasas Ciclina-Dependientes
3.
RNA Biol ; 19(1): 1103-1114, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255182

RESUMEN

The ribosome has long been thought to be a homogeneous cellular machine that constitutively and globally synthesises proteins from mRNA. However, recent studies have revealed that ribosomes are highly heterogeneous, dynamic macromolecular complexes with specialised roles in translational regulation in many organisms across the kingdoms. In this review, we summarise the current understanding of ribosome heterogeneity and the specialised functions of heterogeneous ribosomes. We also discuss specialised translation systems that utilise orthogonal ribosomes.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesamiento Proteico-Postraduccional
4.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671842

RESUMEN

Potassium chlorate (KClO3) has been widely used to evaluate the divergence in nitrogen use efficiency (NUE) between indica and japonica rice subspecies. This study investigated the transcriptional regulation of major genes involved in the NUE in rice treated with KClO3, which acts as an inhibitor of the reducing activity of nitrate reductase (NR) in higher plants. A set of two KClO3 sensitive nitrate reductase (NR) and two nitrate transporter (NRT) introgression rice lines (BC2F7), carrying the indica alleles of NR or NRT, derived from a cross between Saeilmi (japonica, P1) and Milyang23 (indica, P2), were exposed to KClO3 at the seedling stage. The phenotypic responses were recorded 7 days after treatment, and samples for gene expression, physiological, and biochemical analyses were collected at 0 h (control) and 3 h after KClO3 application. The results revealed that Saeilmi (P1, japonica) and Milyang23 (P2, indica) showed distinctive phenotypic responses. In addition, the expression of OsNR2 was differentially regulated between the roots, stem, and leaf tissues, and between introgression lines. When expressed in the roots, OsNR2 was downregulated in all introgression lines. However, in the stem and leaves, OsNR2 was upregulated in the NR introgression lines, but downregulation in the NRT introgression lines. In the same way, the expression patterns of OsNIA1 and OsNIA2 in the roots, stem, and leaves indicated a differential transcriptional regulation by KClO3, with OsNIA2 prevailing over OsNIA1 in the roots. Under the same conditions, the activity of NR was inhibited in the roots and differentially regulated in the stem and leaf tissues. Furthermore, the transcriptional divergence of OsAMT1.3 and OsAMT2.3, OsGLU1 and OsGLU2, between NR and NRT, coupled with the NR activity pattern in the roots, would indicate the prevalence of nitrate (NO3¯) transport over ammonium (NH4+) transport. Moreover, the induction of catalase (CAT) and polyphenol oxidase (PPO) enzyme activities in Saeilmi (P1, KClO3 resistant), and the decrease in Milyang23 (P2, KClO3 sensitive), coupled with the malondialdehyde (MDA) content, indicated the extent of the oxidative stress, and the induction of the adaptive response mechanism, tending to maintain a balanced reduction-oxidation state in response to KClO3. The changes in the chloroplast pigments and proline content propose these compounds as emerging biomarkers for assessing the overall plant health status. These results suggest that the inhibitory potential of KClO3 on the reduction activity of the nitrate reductase (NR), as well as that of the genes encoding the nitrate and ammonium transporters, and glutamate synthase are tissue-specific, which may differentially affect the transport and assimilation of nitrate or ammonium in rice.


Asunto(s)
Cloratos/farmacología , Nitrógeno/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutamato Sintasa/genética , Glutamato Sintasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Oryza/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Prolina/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34639042

RESUMEN

The green rice leafhopper (GRH, Nephotettix cincticeps Uhler) is one of the most important insect pests causing serious damage to rice production and yield loss in East Asia. Prior to performing RNA-Seq analysis, we conducted an electrical penetration graph (EPG) test to investigate the feeding behavior of GRH on Ilpum (recurrent parent, GRH-susceptible cultivar), a near-isogenic line (NIL carrying Grh1) compared to the Grh1 donor parent (Shingwang). Then, we conducted a transcriptome-wide analysis of GRH-responsive genes in Ilpum and NIL, which was followed by the validation of RNA-Seq data by qPCR. On the one hand, EPG results showed differential feeding behaviors of GRH between Ilpum and NIL. The phloem-like feeding pattern was detected in Ilpum, whereas the EPG test indicated a xylem-like feeding habit of GRH on NIL. In addition, we observed a high death rate of GRH on NIL (92%) compared to Ilpum (28%) 72 h post infestation, attributed to GRH failure to suck the phloem sap of NIL. On the other hand, RNA-Seq data revealed that Ilpum and NIL GRH-treated plants generated 1,766,347 and 3,676,765 counts per million mapped (CPM) reads, respectively. The alignment of reads indicated that more than 75% of reads were mapped to the reference genome, and 8859 genes and 15,815,400 transcripts were obtained. Of this number, 3424 differentially expressed genes (DEGs, 1605 upregulated in Ilpum and downregulated in NIL; 1819 genes upregulated in NIL and downregulated in Ilpum) were identified. According to the quantile normalization of the fragments per kilobase of transcript per million mapped reads (FPKM) values, followed by the Student's t-test (p < 0.05), we identified 3283 DEGs in Ilpum (1935 upregulated and 1348 downregulated) and 2599 DEGs in NIL (1621 upregulated and 978 downregulated) with at least a log2 (logarithm base 2) twofold change (Log2FC ≥2) in the expression level upon GRH infestation. Upregulated genes in NIL exceeded by 13.3% those recorded in Ilpum. The majority of genes associated with the metabolism of carbohydrates, amino acids, lipids, nucleotides, the activity of coenzymes, the action of phytohormones, protein modification, homeostasis, the transport of solutes, and the uptake of nutrients, among others, were abundantly upregulated in NIL (carrying Grh1). However, a high number of upregulated genes involved in photosynthesis, cellular respiration, secondary metabolism, redox homeostasis, protein biosynthesis, protein translocation, and external stimuli response related genes were found in Ilpum. Therefore, all data suggest that Grh1-mediated resistance against GRH in rice would involve a transcriptome-wide reprogramming, resulting in the activation of bZIP, MYB, NAC, bHLH, WRKY, and GRAS transcription factors, coupled with the induction of the pathogen-pattern triggered immunity (PTI), systemic acquired resistance (SAR), symbiotic signaling pathway, and the activation of genes associated with the response mechanisms against viruses. This comprehensive transcriptome profile of GRH-responsive genes gives new insights into the molecular response mechanisms underlying GRH (insect pest)-rice (plant) interaction.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hemípteros , Oryza/genética , Oryza/parasitología , Proteínas de Transporte Vesicular/genética , Animales , Biología Computacional , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo Secundario , Transducción de Señal , Transcriptoma , Proteínas de Transporte Vesicular/metabolismo
6.
J Nanosci Nanotechnol ; 19(3): 1690-1694, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469247

RESUMEN

Antimicrobial agents based on organic materials have limited use owing to their low heat resistance and short lifetimes. Therefore, various studies on antibacterial agents that are based on inorganic material systems are increasingly being performed to supplement them. In this study, Cu@SiO2 core-shells are fabricated using Cu cores and SiO2 shells, and are known to have antimicrobial effects. The core-shell was coated with SiO2 using the sol-gel method. Experiments were conducted using X-ray diffraction and the shaking flask method (KS J 4206) to evaluate the characteristics of the core-shell. In the case of X-ray diffraction, both the Cu core and the core-shell fabricated using the sol-gel process were characterized. Escherichia coli and Staphylococcus aureus were evaluated using the KS J 4206 method for their antibacterial properties. Through this study, it is confirmed that a Cu@SiO2 core-shell can be fabricated via the sol-gel method, and that Cu with a core-shell structure has antibacterial effects.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Antibacterianos/farmacología , Dióxido de Silicio/farmacología , Staphylococcus aureus , Difracción de Rayos X
7.
J Nanosci Nanotechnol ; 19(3): 1388-1392, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469193

RESUMEN

V2O5-P2O5-TeO2, a low-temperature vanadate-based glass sealant, was doped with metal oxides (MO = Ag2O, BaO, or CuO), which generate Ag, Ba, and Cu ions, respectively, to strengthen the glass structure and improve its water resistance. These ions reduce the number of nonbridging oxygen atoms in the glass structure by forming V-O-M or P-O-M crosslinks in the V2O5-P2O5 glass system. Structural analysis using Fourier-transform infrared spectroscopy indicated that the numbers of P-O-P, V═O, and V-O-V bonds decreased with increasing metal oxide content. Thermal property analyses revealed that the glass transition temperatures increased by approximately 2-30 °C and that the coefficients of thermal expansion only varied within approximately ±10×10-7 K-1 among all the glass samples. The contact angles were measured to quantify the wetting properties of the doped glasses. The contact angle increased from 11 to 36° with increasing metal oxide content at 410 °C. As an indication of the water resistances of the doped glasses, the dissolution rates of the 9 mol% Ag2O-doped and pure glasses were 0.078 and 0.523 g cm-2, respectively.

8.
J Exp Bot ; 68(3): 727-737, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035023

RESUMEN

The promotive effects of brassinosteroids (BRs) on plant growth and development have been widely investigated; however, it is not known whether BRs directly affect nutrient uptake. Here, we explored the possibility of a direct relationship between BRs and ammonium uptake via AMT1-type genes in rice (Oryza sativa). BR treatment increased the expression of AMT1;1 and AMT1;2, whereas in the mutant d61-1, which is defective in the BR-receptor gene BRI1, BR-dependent expression of these genes was suppressed. We then employed Related to ABI3/VP1-Like 1 (RAVL1), which is involved in BR homeostasis, to investigate BR-mediated AMT1 expression and its effect on NH4+ uptake in rice roots. AMT1;2 expression was lower in the ravl1 mutant, but higher in the RAVL1-overexpressing lines. EMSA and ChIP analyses showed that RAVL1 activates the expression of AMT1;2 by directly binding to E-box motifs in its promoter. Moreover, 15NH4+ uptake, cellular ammonium contents, and root responses to methyl-ammonium strongly depended on RAVL1 levels. Analysing AMT1;2 expression levels in different crosses between BRI1 and RAVL1 mutant and overexpression lines indicated that RAVL1 acts downstream of BRI1 in the regulation of AMT1;2. Thus, the present study shows how BRs may be involved in the transcriptional regulation of nutrient transporters to modulate their uptake capacity.


Asunto(s)
Brasinoesteroides/metabolismo , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Transporte de Catión/metabolismo , Homeostasis , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo
9.
J Exp Bot ; 67(6): 1883-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26826218

RESUMEN

Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice.


Asunto(s)
Brasinoesteroides/farmacología , Ácidos Indolacéticos/metabolismo , Oryza/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Transducción de Señal , Alelos , Fenómenos Biomecánicos/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Hidroxilación , Mutación/genética , Oryza/efectos de los fármacos , Oryza/genética , Fenotipo , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos
10.
Theor Appl Genet ; 129(10): 1861-71, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27323767

RESUMEN

KEY MESSAGE: We fine mapped the Xa4 locus and developed a pyramided rice line containing Xa3 and Xa4 R - alleles and a cold-tolerance QTL. This line will be valuable in rice breeding. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a destructive disease of cultivated rice. Pyramiding BB resistance genes is an essential approach for increasing the resistance level of rice varieties. We selected an advanced backcross recombinant inbred line 132 (ABL132) from the BC3F7 population derived from a cross between cultivars Junam and IR72 by K3a inoculation and constructed the mapping population (BC4F6) to locate the Xa4 locus. The Xa4 locus was found to be delimited within a 60-kb interval between InDel markers InDel1 and InDel2 and tightly linked with the Xa3 gene on chromosome 11. After cold (4 °C) treatment, ABL132 with introgressions of IR72 in chromosome 11 showed lower survival rate, chlorophyll content, and relative water content compared to Junam. Genetic analysis showed that the cold stress-related quantitative trait locus (QTL) qCT11 was located in a 1.3-Mb interval close to the Xa4 locus. One line, ABL132-36, containing the Xa3 resistance allele from Junam, the Xa4 resistance allele from IR72, and the cold-tolerance QTL from Junam (qCT11), was developed from a BC4F6 population of 250 plants. This is the first report on the pyramiding of Xa3 and Xa4 genes with a cold-tolerance QTL. This region could provide a potential tool for improving resistance against BB and low-temperature stress in rice-breeding programs.


Asunto(s)
Frío , Resistencia a la Enfermedad/genética , Oryza/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Proteínas Tirosina Quinasas Receptoras/genética , Alelos , Genes de Plantas , Marcadores Genéticos , Mutación INDEL , Oryza/microbiología , Mapeo Físico de Cromosoma , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Xanthomonas
11.
Theor Appl Genet ; 127(1): 51-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24114051

RESUMEN

KEY MESSAGE: We obtained interesting results for genetic analysis and molecular mapping of the du12(t) gene. Control of the amylose content in rice is the major strategy for breeding rice with improved quality. In this study, we conducted genetic analysis and molecular mapping to identify the dull gene in the dull rice, Milyang262. A single recessive gene, tentatively designated as du12(t), was identified as the dull gene that leads to the low amylose character of Milyang262. To investigate the inheritance of du12(t), genetic analysis on an F2 population derived from a cross between the gene carrier, Milyang262, and a moderate amylose content variety, Junam, was conducted. A segregation ratio of 3:1 (χ (2) = 1.71, p = 0.19) was observed, suggesting that du12(t) is a single recessive factor that controls the dull character in Milyang262. Allelism tests confirmed that du12(t) is not allelic to other low amylose controlling genes, wx or du1. Recessive class analysis was performed to localize the du12(t) locus. Mapping of du12(t) was conducted on F2 and F3 populations of Baegokchal/Milyang262 cross. Linkage analysis of 120 F2 plants revealed that RM6926 and RM3509 flank du12(t) at a 2.38-Mb region. To refine the du12(t) locus position, 986 F2 and 289 F3 additional normal plants were screened by the flanking markers. Twenty-six recombinant plants were identified and later genotyped with four additional adjacent markers located between RM6926 and RM3509. Finally, du12(t) was mapped to an 840-kb region on the distal region of the long arm of chromosome 6, delimited by SSR markers RM20662 and RM412, and co-segregated by RM3765 and RM176.


Asunto(s)
Amilosa/metabolismo , Genes de Plantas , Oryza/genética , Alelos , Amilosa/genética , Mapeo Cromosómico , Genotipo , Oryza/enzimología , Fenotipo
12.
Plant Physiol Biochem ; 206: 108308, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38169224

RESUMEN

Seed longevity is a critical characteristic in agriculture, yet the specific genes/proteins responsible for this trait and the molecular mechanisms underlying reduced longevity during seed aging remain largely elusive. Here we report the comparative proteome and metabolome profiling of three rice cultivars exhibiting varying degrees of aging tolerance: Dharial, an aging-tolerant cultivar; Ilmi, an aging-sensitive cultivar; and A2, a moderately aging-tolerant cultivar developed from the crossbreeding of Dharial and Ilmi. Artificial aging treatment (AAT) markedly reduced the germination percentage and enhanced the activities of antioxidant enzymes in all the cultivars. Further, proteomics results showed a key role of the ubiquitin (Ub)-proteasome pathway in the degradation of damaged proteins during AAT while other proteases were majorly reduced. In addition, proteins associated with energy production and protein synthesis were strongly reduced in Ilmi while these were majorly increased in A2 and Dharial. These, along with metabolomics results, suggest that Ub-proteasome mediated protein degradation during AAT results in the accumulation of free amino acids in Ilmi while tolerant cultivars potentially utilize those for energy production and synthesis of stress-related proteins, especially hsp20/alpha-crystallin family protein. Additionally, both Dharial and A2 seem to activate brassinosteroid signaling and suppress jasmonate signaling which initiates a signaling cascade that allows accumulation of enzymatic and non-enzymatic antioxidants for efficient detoxification of aging-induced ROS. Taken together, these results provide an in-depth understanding of the aging-induced changes in rice seeds and highlight key pathways responsible for maintaining seed longevity during AAT.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/metabolismo , Brasinoesteroides/metabolismo , Germinación , Oryza/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Semillas/metabolismo
13.
Medicine (Baltimore) ; 103(2): e36945, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215099

RESUMEN

RATIONALE: Myofibromas are rare benign spindle cell tumors of the soft tissue, bone, or internal organs that occur at any age. Here, we report a post-surgical thyroid bed myofibroma that mimicked a papillary thyroid carcinoma. PATIENT CONCERNS: A 56-year-old male presented with a mass in the thyroid surgical bed, detected 3 years post thyroidectomy following papillary carcinoma. DIAGNOSIS: Thyroid ultrasonography revealed a well-defined, lobulated, hypoechoic, solid nodule, with large rod-like echogenic foci in the thyroid surgical bed. The development of a postoperative suture granuloma was considered. However, ultrasonography performed 12 months later showed a marked increase in the lesion size. Two fine needle aspiration cytology yielded nondiagnostic results. INTERVENTION: Considering the possibility of local tumor recurrence, surgical resection was performed. OUTCOME: The diagnosis of a myofibroma was confirmed, and no additional treatment was administered. LESSONS: It is challenging to differentiate lesions occurring on the thyroid surgical bed after surgery, from recurrent thyroid cancer. A lesion measuring 6 mm, with a degree of punctate echogenicity, suggests tumor recurrence. Moreover, myofibromas are extremely rare. This case highlights that it is advisable to perform a core needle biopsy in cases of nondiagnostic fine needle aspiration results.


Asunto(s)
Leiomioma , Miofibroma , Neoplasias de la Tiroides , Masculino , Humanos , Persona de Mediana Edad , Cáncer Papilar Tiroideo/diagnóstico , Cáncer Papilar Tiroideo/cirugía , Miofibroma/cirugía , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/cirugía , Recurrencia Local de Neoplasia/patología , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/patología , Tiroidectomía/métodos , Leiomioma/cirugía
14.
Biosens Bioelectron ; 254: 116222, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518560

RESUMEN

Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.


Asunto(s)
Técnicas Biosensibles , Elastómeros , Elastómeros/química , Materiales Biocompatibles/química , Implantes Absorbibles , Polímeros/química , Poliésteres/química
15.
Nanomicro Lett ; 16(1): 102, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300387

RESUMEN

Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.

16.
Sci Adv ; 10(36): eadp9818, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39231226

RESUMEN

As the regenerative mechanisms of biological organisms, self-healing provides useful functions for soft electronics or associated systems. However, there have been few examples of soft electronics where all components have self-healing properties while also ensuring compatibility between components to achieve multifunctional and resilient bio-integrated electronics. Here, we introduce a stretchable, biodegradable, self-healing conductor constructed by combination of two layers: (i) synthetic self-healing elastomer and (ii) self-healing conductive composite with additives. Abundant dynamic disulfide and hydrogen bonds of the elastomer and conductive composite enable rapid and complete recovery of electrical conductivity (~1000 siemens per centimeter) and stretchability (~500%) in response to repetitive damages, and chemical interactions of interpenetrated polymer chains of these components facilitate robust adhesion strength, even under extreme mechanical stress. System-level demonstration of soft, self-healing electronics with diagnostic/therapeutic functions for the urinary bladder validates the possibility for versatile, practical uses in biomedical research areas.


Asunto(s)
Elastómeros , Conductividad Eléctrica , Electrónica , Elastómeros/química , Materiales Biocompatibles/química , Humanos , Polímeros/química
17.
Prim Care Respir J ; 22(2): 149-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23494188

RESUMEN

BACKGROUND: Nursing home-acquired pneumonia (NHAP) is the leading cause of death among long-term care residents. AIMS: To compare current scoring indices (NHAP model score, Pneumonia Severity Index (PSI), CURB-65 (confusion, urea nitrogen, respiratory rate, blood pressure, age >65 years) and SOAR (systolic blood pressure, oxygenation, age, respiratory rate)) in predicting mortality and admission to the intensive care unit (ICU) in patients with NHAP. METHODS: This retrospective observational study was conducted between July 2008 and June 2011 using data from the Korean Nursing Home Networks. Two hundred and eight nursing home residents were hospitalised with pneumonia in one general hospital. The primary outcome measure was 30-day all-cause mortality. Secondary outcome measures were intensive respiratory or vasopressor support (IRVS), and severe pneumonia (ICU admission or IRVS). RESULTS: PSI class V showed the highest Youden index (0.45), specificity (66.7%), positive predictive value (PPV, 40.0%), negative predictive value (NPV, 91.5%), and area under the curve (AUC, 0.73) for 30-day mortality. For severe pneumonia, PSI class V showed the highest Youden index (0.40), specificity (72.8%), PPV (62.2%), NPV (77.1%), and AUC (0.70). Similarly, PSI class V showed the highest Youden index (0.35), specificity (68.3%), PPV (51.1%), NPV (80.5%), and AUC (0.69) for IRVS. CONCLUSIONS: The PSI has superior discriminatory power in predicting all three clinical outcomes (30-day mortality, severe pneumonia, and IVRS) compared with the NHAP model score, CURB-65 and SOAR.


Asunto(s)
Infección Hospitalaria/diagnóstico , Casas de Salud/estadística & datos numéricos , Neumonía/diagnóstico , Índice de Severidad de la Enfermedad , Anciano de 80 o más Años , Infección Hospitalaria/epidemiología , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Neumonía/etiología , Neumonía/mortalidad , Pronóstico , República de Corea/epidemiología , Estudios Retrospectivos , Sensibilidad y Especificidad
18.
J Agric Food Chem ; 71(32): 12357-12367, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37549031

RESUMEN

Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.


Asunto(s)
Oryza , Proteoma , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , Semillas/genética , Semillas/metabolismo
19.
ACS Nano ; 17(15): 14822-14830, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37497757

RESUMEN

Although biodegradable, transient electronic devices must dissolve or decompose via environmental factors, an effective waterproofing or encapsulation system is essential for reliable, durable operation for a desired period of time. Existing protection approaches use multiple or alternate layers of electrically inactive organic/inorganic elements combined with polymers; however, their high mechanical stiffness is not suitable for soft, time-dynamic biological tissues/skins/organs. Here, we introduce a stretchable, bioresorbable encapsulant using nanoparticle-incorporated elastomeric composites with modifications of surface morphology. Nature-inspired micropatterns reduce the diffusion area for water molecules, and embedded nanoparticles impede water permeation, which synergistically enhances the water-barrier performance. Empirical and theoretical evaluations validate the encapsulation mechanisms under strains. Demonstration of a soft, degradable shield with an optical component under a biological solution highlights the potential applicability of the proposed encapsulation strategy.

20.
Front Plant Sci ; 14: 1231914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636104

RESUMEN

'Seolgaeng', an opaque-endosperm rice (Oryza sativa) mutant, is used to prepare high-quality dry-milled rice flour. The mutation causing its opaque-endosperm phenotype was unknown. Map-based cloning identified a missense mutation in the gene FRUCTOSE-6-PHOSPHATE 2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE 2 (OsF2KP2) in Seolgaeng. Transfer DNA insertion and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced f2kp2 mutants exhibited opaque endosperm. Rice harbors another F2KP gene, OsF2KP1. CRISPR/Cas9-induced double mutants of OsF2KP1 and OsF2KP2 (f2kp-d) possessed more opaque endosperm compared to f2kp2 single mutants, whereas the endosperm of the f2kp1 single mutant was normal. Grain hardness and damaged starch content were significantly reduced in f2kp2 mutants compared to the wild type and f2kp1. Amylose content was lower than normal in f2kp2 mutants but not f2kp1. Grain hardness and amylose content were much lower in f2kp-d than in f2kp2. Starch polymerization analysis revealed altered amylopectin structure in f2kp2 and f2kp-d mutants. F2KP activity was lower in f2kp2 and much lower in the double mutants when compared to the wild types, but f2kp1 showed no significant difference. In coleoptiles, hypoxia induced OsF2KP2 expression but downregulated OsF2KP1. These results suggest that OsF2KP2 functions as the main F2KP isoform in endosperm experiencing hypoxia, but OsF2KP1 may partially compensate for the absence of OsF2KP2. We propose that F2KP has a crucial role in inorganic pyrophosphate-utilizing energy metabolism for starch biosynthesis in rice endosperm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA