Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 36(4): 948-955, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-31917578

RESUMEN

Carbon nanotubes (CNTs) have attracted considerable attention because of their high electrical conductivity and outstanding mechanical properties. As such, there have been numerous attempts to form CNTs into diverse structures for use in a wide range of applications. However, the intrinsic high aspect ratios of CNTs and resulting deformability have prevented the fabrication of sophisticated CNT-based structures, especially for three-dimensional (3D) cellular architectures. To challenge this limitation, we present a novel method to fabricate a 3D CNT cellular network from the assembly of microfluidically synthesized CNT-shelled microbubbles. We successfully generated stable spherical CNT-shelled bubbles with excellent size and shape uniformity by precisely controlling bubble dimensions by varying microfluidic variables. We also developed a fundamental understanding of the bubble stability, which allowed us to suppress shrinkage-induced deformation. The synthesized CNT-shelled bubbles were assembled into a 3D close-packed structure, followed by treatment with thermal reduction to induce interfacial bonding and transformation into a closed cellular network structure. Overall, this work provides a new strategy of assembling 1D nanomaterials as the building blocks for well-regulated 3D closed cellular architectures with improved structural or physical properties.

2.
Adv Mater ; 30(45): e1802997, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30156738

RESUMEN

Advanced materials with low density and high strength impose transformative impacts in the construction, aerospace, and automobile industries. These materials can be realized by assembling well-designed modular building units (BUs) into interconnected structures. This study uses a hierarchical design strategy to demonstrate a new class of carbon-based, ultralight, strong, and even superelastic closed-cellular network structures. Here, the BUs are prepared by a multiscale design approach starting from the controlled synthesis of functionalized graphene oxide nanosheets at the molecular- and nanoscale, leading to the microfluidic fabrication of spherical solid-shelled bubbles at the microscale. Then, bubbles are strategically assembled into centimeter-scale 3D structures. Subsequently, these structures are transformed into self-interconnected and structurally reinforced closed-cellular network structures with plesiohedral cellular units through post-treatment, resulting in the generation of 3D graphene lattices with rhombic dodecahedral honeycomb structure at the centimeter-scale. The 3D graphene suprastructure concurrently exhibits the Young's modulus above 300 kPa while retaining a light density of 7.7 mg cm-3 and sustaining the elasticity against up to 87% of the compressive strain benefiting from efficient stress dissipation through the complete space-filling closed-cellular network. The method of fabricating the 3D graphene closed-cellular structure opens a new pathway for designing lightweight, strong, and superelastic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA