Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Ther ; 31(6): 1807-1828, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073128

RESUMEN

While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs. Among those was miR-216a, a pro-angiogenic microRNA which is enriched in cardiac microvascular endothelial cells and reduced in expression under cardiac stress conditions. miR-216a null mice display dramatic cardiac phenotypes related to impaired myocardial vascularization and unbalanced autophagy and inflammation, supporting a model where microRNA regulation of microvascularization impacts the cardiac response to stress.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Animales , Ratones , Células Endoteliales/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética
2.
Mol Ther ; 30(6): 2257-2273, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278675

RESUMEN

As mediators of intercellular communication, extracellular vesicles containing molecular cargo, such as microRNAs, are secreted by cells and taken up by recipient cells to influence their cellular phenotype and function. Here we report that cardiac stress-induced differential microRNA content, with miR-200c-3p being one of the most enriched, in cardiomyocyte-derived extracellular vesicles mediates functional cross-talk with endothelial cells. Silencing of miR-200c-3p in mice subjected to chronic increased cardiac pressure overload resulted in attenuated hypertrophy, smaller fibrotic areas, higher capillary density, and preserved cardiac ejection fraction. We were able to maximally rescue microvascular and cardiac function with very low doses of antagomir, which specifically silences miR-200c-3p expression in non-myocyte cells. Our results reveal vesicle transfer of miR-200c-3p from cardiomyocytes to cardiac endothelial cells, underlining the importance of cardiac intercellular communication in the pathophysiology of heart failure.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Comunicación Celular , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
3.
Clin Sci (Lond) ; 136(15): 1157-1178, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35946958

RESUMEN

Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , ARN Largo no Codificante , Biología , Enfermedades Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Corazón , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Kidney Int ; 99(5): 1088-1101, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33359500

RESUMEN

Chronic kidney disease (CKD) promotes development of cardiac abnormalities and is highly prevalent in patients with heart failure, particularly in those with preserved ejection fraction. CKD is associated with endothelial dysfunction, however, whether CKD can induce impairment of endothelium-to-cardiomyocyte crosstalk leading to impairment of cardiomyocyte function is not known. The sodium-glucose co-transporter 2 inhibitor, empagliflozin, reduced cardiovascular events in diabetic patients with or without CKD, suggesting its potential as a new treatment for heart failure with preserved ejection fraction. We hypothesized that uremic serum from patients with CKD would impair endothelial control of cardiomyocyte relaxation and contraction, and that empagliflozin would protect against this effect. Using a co-culture system of human cardiac microvascular endothelial cells with adult rat ventricular cardiomyocytes to measure cardiomyocyte relaxation and contraction, we showed that serum from patients with CKD impaired endothelial enhancement of cardiomyocyte function which was rescued by empagliflozin. Exposure to uremic serum reduced human cardiac microvascular endothelial cell nitric oxide bioavailability, and increased mitochondrial reactive oxygen species and 3-nitrotyrosine levels, indicating nitric oxide scavenging by reactive oxygen species. Empagliflozin attenuated uremic serum-induced generation of endothelial mitochondrial reactive oxygen species, leading to restoration of nitric oxide production and endothelium-mediated enhancement of nitric oxide levels in cardiomyocytes, an effect largely independent of sodium-hydrogen exchanger-1. Thus, empagliflozin restores the beneficial effect of cardiac microvascular endothelial cells on cardiomyocyte function by reducing mitochondrial oxidative damage, leading to reduced reactive oxygen species accumulation and increased endothelial nitric oxide bioavailability.


Asunto(s)
Miocitos Cardíacos , Insuficiencia Renal Crónica , Animales , Compuestos de Bencidrilo , Células Endoteliales , Endotelio , Endotelio Vascular , Glucósidos , Humanos , Óxido Nítrico , Ratas , Insuficiencia Renal Crónica/tratamiento farmacológico
6.
Cell Physiol Biochem ; 53(5): 865-886, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31724838

RESUMEN

BACKGROUND/AIMS: Heart failure is characterized by chronic low-grade vascular inflammation, which in itself can lead to endothelial dysfunction. Clinical trials showed reductions in heart failure-related hospitalizations of type 2 diabetic patients using sodium glucose co-transporter 2 inhibitors (SGLT2i's). Whether and how SGLT2i's directly affect the endothelium under inflammatory conditions is not completely understood. The aim of the study was to investigate whether the SGLT2i Empagliflozin (EMPA) and Dapagliflozin (DAPA) reduce tumor necrosis factor α (TNFα) induced endothelial inflammation in vitro. METHODS: Human coronary arterial endothelial cells (HCAECs) and human umbilical vein endothelial cells (HUVECs) were (pre-)incubated with 1 µM EMPA or DAPA and subsequently exposed to 10 ng/ml TNFα. ROS and NO were measured using live cell imaging. Target proteins were either determined by infrared western blotting or fluorescence activated cell sorting (FACS). The connection between Cav-1 and eNOS was determined by co-immunoprecipitation. RESULTS: Nitric oxide (NO) bioavailability was reduced by TNFα and both EMPA and DAPA restored NO levels in TNFα-stimulated HCAECs. Intracellular ROS was increased by TNFα, and this increase was completely abolished by EMPA and DAPA in HCAECs by means of live cell imaging. eNOS signaling was significantly disturbed after 24 h when cells were exposed to TNFα for 24h, yet the presence of both SGLT2is did not prevent this disruption. TNFα-induced enhanced permeability at t=24h was unaffected in HUVECs by EMPA. Similarly, adhesion molecule expression (VCAM-1 and ICAM-1) was elevated after 4h TNFα (1.5-5.5 fold increase of VCAM-1 and 4-12 fold increase of ICAM-1) but were unaffected by EMPA and DAPA in both cell types. Although we detected expression of SGLT2 protein levels, the fact that we could not silence this expression by means of siRNA and the mRNA levels of SGLT2 were not detectable in HCAECs, suggests aspecificity or our SGLT2 antibody and absence of SGLT2 in our cells. CONCLUSION: These data suggest that EMPA and DAPA rather restore NO bioavailability by inhibiting ROS generation than by affecting eNOS expression or signaling, barrier function and adhesion molecules expression in TNFα-induced endothelial cells. Furthermore, the observed effects cannot be ascribed to the inhibition of SGLT2 in endothelial cells.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Regulación hacia Abajo/efectos de los fármacos , Glucósidos/farmacología , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Vasos Coronarios/citología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Permeabilidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/metabolismo , Molécula 1 de Adhesión Celular Vascular
7.
Am J Physiol Heart Circ Physiol ; 315(5): H1414-H1424, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028196

RESUMEN

Cardiovascular diseases account for ~50% of mortality in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is independently associated with endothelial dysfunction and cardiovascular mortality. We hypothesized that CKD impairs microvascular endothelial function and that this can be attributed to FGF23. Mice were subjected to partial nephrectomy (5/6Nx) or sham surgery. To evaluate the functional role of FGF23, non-CKD mice received FGF23 injections and CKD mice received FGF23-blocking antibodies after 5/6Nx surgery. To examine microvascular function, myocardial perfusion in vivo and vascular function of gracilis resistance arteries ex vivo were assessed in mice. 5/6Nx surgery blunted ex vivo vasodilator responses to acetylcholine, whereas responses to sodium nitroprusside or endothelin were normal. In vivo FGF23 injections in non-CKD mice mimicked this endothelial defect, and FGF23 antibodies in 5/6Nx mice prevented endothelial dysfunction. Stimulation of microvascular endothelial cells with FGF23 in vitro did not induce ERK phosphorylation. Increased plasma asymmetric dimethylarginine concentrations were increased by FGF23 and strongly correlated with endothelial dysfunction. Increased FGF23 concentration did not mimic impaired endothelial function in the myocardium of 5/6Nx mice. In conclusion, impaired peripheral endothelium-dependent vasodilatation in 5/6Nx mice is mediated by FGF23 and can be prevented by blocking FGF23. These data corroborate FGF23 as an important target to combat cardiovascular disease in CKD. NEW & NOTEWORTHY In the present study, we provide the first evidence that fibroblast growth factor 23 (FGF23) is a cause of peripheral endothelial dysfunction in a model of early chronic kidney disease (CKD) and that endothelial dysfunction in CKD can be prevented by blockade of FGF23. This pathological effect on endothelial cells was induced by long-term exposure of physiological levels of FGF23. Mechanistically, increased plasma asymmetric dimethylarginine concentrations were strongly associated with this endothelial dysfunction in CKD and were increased by FGF23.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Músculo Grácil/irrigación sanguínea , Riñón/fisiopatología , Microcirculación , Microvasos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Resistencia Vascular , Vasodilatación , Animales , Arginina/análogos & derivados , Arginina/sangre , Células Cultivadas , Circulación Coronaria , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Masculino , Ratones Endogámicos C57BL , Microcirculación/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/fisiopatología , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal/efectos de los fármacos , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
8.
J Mol Cell Cardiol ; 88: 145-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26436984

RESUMEN

Nitric oxide (NO) produced by endothelial NO synthase (eNOS) exerts beneficial effects in a variety of cardiovascular disease states. Studies on the benefit of eNOS activity in pressure-overload cardiac hypertrophy and dysfunction produced by aortic stenosis are equivocal, which may be due to different expression levels of eNOS or different severities of pressure-overload. Consequently, we investigated the effects of eNOS-expression level on cardiac hypertrophy and dysfunction produced by mild or severe pressure-overload. To unravel the impact of eNOS on pressure-overload cardiac dysfunction we subjected eNOS deficient, wildtype and eNOS overexpressing transgenic (eNOS-Tg) mice to 8weeks of mild or severe transverse aortic constriction (TAC) and studied cardiac geometry and function at the whole organ and tissue level. In both mild and severe TAC, lack of eNOS ameliorated, whereas eNOS overexpression aggravated, TAC-induced cardiac remodeling and dysfunction. Moreover, the detrimental effects of eNOS in severe TAC were associated with aggravation of TAC-induced NOS-dependent oxidative stress and by further elevation of eNOS monomer levels, consistent with enhanced eNOS uncoupling. In the presence of TAC, scavenging of reactive oxygen species with N-acetylcysteine reduced eNOS S-glutathionylation, eNOS monomer and NOS-dependent superoxide levels in eNOS-Tg mice to wildtype levels. Accordingly, N-acetylcysteine improved cardiac function in eNOS-Tg but not in wildtype mice with TAC. In conclusion, independent of the severity of TAC, eNOS aggravates cardiac remodeling and dysfunction, which appears due to TAC-induced eNOS uncoupling and superoxide production.


Asunto(s)
Cardiomegalia/enzimología , Cardiomegalia/genética , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico/metabolismo , Remodelación Ventricular , Acetilcisteína/farmacología , Animales , Aorta/cirugía , Cardiomegalia/etiología , Cardiomegalia/patología , Constricción Patológica/complicaciones , Constricción Patológica/cirugía , Activación Enzimática , Femenino , Depuradores de Radicales Libres/farmacología , Eliminación de Gen , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Índice de Severidad de la Enfermedad , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo
9.
Commun Biol ; 7(1): 541, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714838

RESUMEN

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Asunto(s)
Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana , Semaforinas , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Semaforinas/metabolismo , Semaforinas/genética
10.
iScience ; 27(1): 108681, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38269100

RESUMEN

Aging increases the risk of age-related diseases, imposing substantial healthcare and personal costs. Targeting fundamental aging mechanisms pharmacologically can promote healthy aging and reduce this disease susceptibility. In this work, we employed transcriptome-based drug screening to identify compounds emulating transcriptional signatures of long-lived genetic interventions. We discovered compound 60 (Cmpd60), a selective histone deacetylase 1 and 2 (HDAC1/2) inhibitor, mimicking diverse longevity interventions. In extensive molecular, phenotypic, and bioinformatic assessments using various cell and aged mouse models, we found Cmpd60 treatment to improve age-related phenotypes in multiple organs. Cmpd60 reduces renal epithelial-mesenchymal transition and fibrosis in kidney, diminishes dementia-related gene expression in brain, and enhances cardiac contractility and relaxation for the heart. In sum, our two-week HDAC1/2 inhibitor treatment in aged mice establishes a multi-tissue, healthy aging intervention in mammals, holding promise for therapeutic translation to promote healthy aging in humans.

11.
Front Cardiovasc Med ; 10: 1300375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259314

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.

12.
Am J Physiol Endocrinol Metab ; 302(5): E481-95, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22167522

RESUMEN

Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in maintaining vascular pressure by producing nitric oxide (NO); hence, it has a crucial role in the regulation of endothelial function. The bioavailability of eNOS-derived NO is crucial for this function and might be affected at multiple levels. Uncoupling of eNOS, with subsequently less NO and more superoxide generation, is one of the major underlying causes of endothelial dysfunction found in atherosclerosis, diabetes, hypertension, cigarette smoking, hyperhomocysteinemia, and ischemia/reperfusion injury. Therefore, modulating eNOS uncoupling by stabilizing eNOS activity, enhancing its substrate, cofactors, and transcription, and reversing uncoupled eNOS are attractive therapeutic approaches to improve endothelial function. This review provides an extensive overview of the important role of eNOS uncoupling in the pathogenesis of endothelial dysfunction and the potential therapeutic interventions to modulate eNOS for tackling endothelial dysfunction.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/metabolismo , Animales , Endotelio Vascular/fisiopatología , Inducción Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Óxido Nítrico/agonistas , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/química , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Células Madre/efectos de los fármacos , Células Madre/enzimología , Células Madre/metabolismo , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/fisiopatología
13.
FEBS Lett ; 596(11): 1367-1387, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35531641

RESUMEN

The advancement of medical technology has led not only to an increase in life expectancy but also to a rise in aging-related diseases. Aging promotes metabolic disorders, in turn affecting cardiovascular health. Derailment of biological processes in the pancreas, liver, adipose tissue, and skeletal muscle impairs glucose and lipid metabolism, and mitochondrial function, triggering the development of diabetes and lipid-related disorders that inflict damage on cardiac and vascular tissues. Long noncoding RNAs (lncRNAs) regulate a wide range of biological process and are one of the key factors controlling metabolism and mitochondria. Here, we discuss the versatile function of lncRNAs involved in the metabolic regulation of glucose and lipid, and mitochondrial function, and how the dysregulation of lncRNAs induces the development of various metabolic disorders and their cardiovascular consequences.


Asunto(s)
Enfermedades Cardiovasculares , ARN Largo no Codificante , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Glucosa/metabolismo , Humanos , Lípidos , Músculo Esquelético/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
JACC Basic Transl Sci ; 4(5): 575-591, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31768475

RESUMEN

The positive findings of the EMPA-REG OUTCOME trial (Randomized, Placebo-Controlled Cardiovascular Outcome Trial of Empagliflozin) on heart failure (HF) outcome in patients with type 2 diabetes mellitus suggest a direct effect of empagliflozin on the heart. These patients frequently have HF with preserved ejection fraction (HFpEF), in which a metabolic risk-related pro-inflammatory state induces cardiac microvascular endothelial cell (CMEC) dysfunction with subsequent cardiomyocyte (CM) contractility impairment. This study showed that CMECs confer a direct positive effect on contraction and relaxation of CMs, an effect that requires nitric oxide, is diminished after CMEC stimulation with tumor necrosis factor-α, and is restored by empagliflozin. Our findings on the effect of empagliflozin on CMEC-mediated preservation of CM function suggests that empagliflozin can be used to treat the cardiac mechanical implications of microvascular dysfunction in HFpEF.

16.
Cardiovasc Res ; 118(10): 2227-2228, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35416964
17.
Noncoding RNA Res ; 2(1): 45-55, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30159420

RESUMEN

Heart failure is a complex syndrome involving various pathophysiological processes. An increasing body of evidence shows that the myocardial microvasculature is essential for the homeostasis state and that a decompensated heart is associated with microvascular dysfunction as a result of impaired endothelial angiogenic capacity. The intercellular communication between endothelial cells and cardiomyocytes through various signaling molecules, such as vascular endothelial growth factor, nitric oxide, and non-coding RNAs is an important determinant of cardiac microvascular function. Non-coding RNAs are transported from endothelial cells to cardiomyocytes, and vice versa, regulating microvascular properties and angiogenic processes in the heart. Small-exocytosed vesicles, called exosomes, which are secreted by both cell types, can mediate this intercellular communication. The purpose of this review is to highlight the contribution of the microvasculature to proper heart function maintenance by focusing on the interaction between cardiac endothelial cells and myocytes with a specific emphasis on non-coding RNAs (ncRNAs) in this form of cell-to-cell communication. Finally, the potential of ncRNAs as targets for angiogenesis therapy will also be discussed.

20.
J Am Coll Cardiol ; 61(14): 1471-81, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23500310

RESUMEN

Oxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions, including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alterations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery. Therefore, the understanding of the pathophysiological role of reactive oxygen species (ROS) generated during or after coronary interventions, or both, is essential to improve the success rate of these procedures. Superoxide O2(·-) anions, whether derived from uncoupled endothelial nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, or mitochondria, are among the most harmful ROS. O2(·-) can scavenge nitric oxide, modify proteins and nucleotides, and induce proinflammatory signaling, which may lead to greater ROS production. Current innovations in stent technologies, including biodegradable stents, nitric oxide donor-coated stents, and a new generation of drug-eluting stents, therefore address persistent oxidative stress and reduced nitric oxide bioavailability after percutaneous coronary interventions. This review discusses the molecular mechanisms of ROS generation after coronary interventions, the related pathological events-including restenosis, endothelial dysfunction, and stent thrombosis-and possible therapeutic ways forward.


Asunto(s)
Reestenosis Coronaria/patología , Estrés Oxidativo/fisiología , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Especies Reactivas de Oxígeno/metabolismo , Stents , Adulto , Anciano , Angioplastia Coronaria con Balón/efectos adversos , Angioplastia Coronaria con Balón/métodos , Reestenosis Coronaria/terapia , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/mortalidad , Estenosis Coronaria/terapia , Stents Liberadores de Fármacos , Endotelio Vascular/enzimología , Endotelio Vascular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Cuidados Posoperatorios/métodos , Complicaciones Posoperatorias/tratamiento farmacológico , Complicaciones Posoperatorias/metabolismo , Complicaciones Posoperatorias/patología , Pronóstico , Radiografía , Ensayos Clínicos Controlados Aleatorios como Asunto , Medición de Riesgo , Análisis de Supervivencia , Resultado del Tratamiento , Vasodilatadores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA