Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2122053120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252969

RESUMEN

The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17ß-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17ß-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17ß-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Estrógenos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
2.
Semin Cancer Biol ; 86(Pt 3): 367-381, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34896267

RESUMEN

Organoids are simplified in vitro model systems of organs that are used for modeling tissue development and disease, drug screening, cell therapy, and personalized medicine. Despite considerable success in the design of organoids, challenges remain in achieving real-life applications. Organoids serve as unique and organized groups of micro physiological systems that are capable of self-renewal and self-organization. Moreover, they exhibit similar organ functionality(ies) as that of tissue(s) of origin. Organoids can be designed from adult stem cells, induced pluripotent stem cells, or embryonic stem cells. They consist of most of the important cell types of the desired tissue/organ along with the topology and cell-cell interactions that are highly similar to those of an in vivo tissue/organ. Organoids have gained interest in human biomedical research, as they demonstrate high promise for use in basic, translational, and applied research. As in vitro models, organoids offer significant opportunities for reducing the reliance and use of experimental animals. In this review, we will provide an overview of organoids, as well as those intercellular communications mediated by extracellular vesicles (EVs), and discuss the importance of organoids in modeling a tumor immune microenvironment (TIME). Organoids can also be exploited to develop a better understanding of intercellular communications mediated by EVs. Also, organoids are useful in mimicking TIME, thereby offering a better-controlled environment for studying various associated biological processes and immune cell types involved in tumor immunity, such as T-cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, among others.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Neoplasias , Adulto , Animales , Humanos , Organoides , Células Madre Pluripotentes Inducidas/metabolismo , Medicina de Precisión , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
3.
Curr Issues Mol Biol ; 45(1): 738-751, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36661535

RESUMEN

BACKGROUND: Colorectal cancer is highly common and causes high mortality rates. Treatment for colorectal cancer is multidisciplinary, but in most cases the main option remains surgery. Intriguingly, in recent years, a number of studies have shown that a patient's postoperative outcome may be influenced by certain anesthetic drugs. Our main objective was to compare the effect of propofol-total intravenous anesthesia (TIVA) with sevoflurane anesthesia and to investigate the potential role of intravenous lidocaine on colon cancer cell functions. We tested the effects of serum from colorectal cancer patients undergoing TIVA vs. sevoflurane anesthesia with or without lidocaine on HCT 116 cell lines; on proliferation, apoptosis, migration, and cell cycles; and on cancer-related gene expressions. METHODS: 60 patients who were scheduled for colorectal cancer surgery were randomized into four different groups (two groups with TIVA and two groups with sevoflurane anesthesia with or without intravenous lidocaine). Blood samples were collected at the start and at the end of surgery. HCT 116 cells were exposed to the patients' serum. RESULTS: 15 patients were included in each of the study groups. We did not find any significant difference on cell viability or apoptosis between the study groups. However, there was an increased apoptosis in propofol groups, but this result was not statistically significant. A significant increase in the expression profile of the TP53 gene in the propofol group was registered (p = 0.029), while in the other study groups, no significant differences were reported. BCL2 and CASP3 expressions increased in the sevoflurane-lidocaine group without statistical significance. CONCLUSIONS: In our study, serum from patients receiving different anesthetic techniques did not significantly influence the apoptosis, migration, and cell cycle of HCT-116 colorectal carcinoma cells. Viability was also not significantly influenced by the anesthetic technique, except the sevoflurane-lidocaine group where it was increased. The gene expression of TP53 was significantly increased in the propofol group, which is consistent with the results of similar in vitro studies and may be one of the mechanisms by which anesthetic agents may influence the biology of cancer cells. Further studies that investigate the effects of propofol and lidocaine in different plasma concentrations on different colon cancer cell lines and assess the impacts of these findings on the clinical outcome are much needed.

4.
J Liposome Res ; 33(3): 234-250, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36472146

RESUMEN

Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The in vitro release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The in vitro cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Gemcitabina , Liposomas , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Línea Celular Tumoral , Polietilenglicoles , Neoplasias Colorrectales/tratamiento farmacológico
5.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902482

RESUMEN

The lack of estrogen or progesterone receptors and absence of HER2 amplification/overexpression in triple-negative breast cancer (TNBC) restricts therapeutic options used in clinical management. MicroRNAs (miRNAs) are small, non-coding transcripts which affect important cellular mechanisms by regulating gene expression at the post-transcriptional level. Among this class, attention was focused on miR-29b-3p with a high profile in TNBC and correlated with the overall survival rates, as TCGA data revealed. This study aims to investigate the implication of the miR-29b-3p inhibitor in TNBC cell lines by identifying a potential therapeutic transcript, improving the clinical outcomes of this disease. The experiments were performed on two TNBC cell lines (MDA-MB-231 and BT549) as in vitro models. An established dose of 50 nM was used for all functional assays performed on the miR-29b-3p inhibitor. A decreased level of miR-29b-3p determined a significant reduction in cell proliferation and colony-forming capacity. At the same time, the changes occurring at the molecular and cellular levels were highlighted. We observed that, when inhibiting the expression level of miR-29b-3p, processes such as apoptosis and autophagy were activated. Further, microarray data revealed that the miRNA expression pattern was altered after miR-29b-3p inhibition, pointing out 8 overexpressed and 11 downregulated miRNAs specific for BT549 cells and 33 upregulated and 10 downregulated miRNAs that were specific for MDA-MB-231 cells. As a common signature for both cell lines, three transcripts were observed, two downregulated, miR-29b-3p and miR-29a, and one upregulated, miR-1229-5p. According to DIANA miRPath, the main predicted targets are related to ECM (extracellular matrix) receptor interaction and TP53 signaling. An additional validation step through qRT-PCR was performed, which showed an upregulation of MCL1 and TGFB1. By inhibiting the expression level of miR-29b-3p, it was shown that complex regulatory pathways targeted this transcript in TNBC cells.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba
6.
Crit Rev Immunol ; 41(1): 13-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822522

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy is a recent therapeutic addition to the field of oncology, the first one approved as represented by tisagenlecleucel followed shortly by approval of axicabtagene ciloleucel. Because this product is derived from T cells, there are several lessons that can be learned from T-cell biology to better understand CAR-T cells. Thus, in this review we discuss the effects that TET2 can have on T cells, macrophages interacting with T cells, and nonimmune cells. In T cells, TET2 mutations have been frequently shown to be associated with FOXP3 expression reduction and instability, which leads to reduction in T regulatory (Treg) cells and increases in T-helper (Th)1 and Th17 cells. This alteration in T-cell polarization balance leads to both an enhanced antitumor activity and an increased probability of autoimmune diseases. In the case of macrophages, TET2 has a similar role, as its reduced activity is associated with an M1 signature but its overexpression is associated with an M2 signature. In nonimmune cells, the role of TET2 is opposite its role in immune cells. Specifically, the reduction in TET2 activity is associated with a decreased immune response both in malignancies and in autoimmune diseases. In the current review, we discuss the role that TET2 plays in T-cell activity and in nonimmune cells in relation to T cells.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Receptores Quiméricos de Antígenos , Tratamiento Basado en Trasplante de Células y Tejidos , Proteínas de Unión al ADN , Dioxigenasas , Humanos , Inmunoterapia Adoptiva , Activación de Linfocitos , Neoplasias/terapia , Proteínas Proto-Oncogénicas/genética
7.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628157

RESUMEN

Lung cancers are broadly divided into two categories: non-small-cell lung carcinoma (NSCLC), which accounts for 80-85% of all cancer cases, and small-cell lung carcinoma (SCLC), which covers the remaining 10-15%. Recent advances in cancer biology and genomics research have allowed an in-depth characterization of lung cancers that have revealed new therapy targets (EGFR, ALK, ROS, and KRAS mutations) and have the potential of revealing even more biomarkers for diagnostic, prognostic, and targeted therapies. A new source of biomarkers is represented by non-coding RNAs, especially microRNAs (miRNAs). MiRNAs are short non-coding RNA sequences that have essential regulatory roles in multiple cancers. Therefore, we aim to investigate the tumor microenvironment (TME) and miRNA tumor profile in a subset of 51 early-stage lung cancer samples (T1 and T2) to better understand early tumor and TME organization and molecular dysregulation. We analyzed the immunohistochemistry expression of CD4 and CD8 as markers of the main TME immune populations, E-cadherin to evaluate early-stage epithelial-to-mesenchymal transition (EMT), and p53, the main altered tumor suppressor gene in lung cancer. Starting from these 4 markers, we identified and validated 4 miRNAs that target TP53 and regulate EMT that can be further investigated as potential early-stage lung cancer biomarkers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Pulmón/patología , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , Microambiente Tumoral/genética
8.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293478

RESUMEN

Neo-adjuvant therapy (NAT) is increasingly used in the clinic for the treatment of breast cancer (BC). Pathological response to NAT has been associated with improved patients' survival; however, the current techniques employed for assessing the tumor response have significant limitations. Small EVs (sEVs)-encapsulated miRNAs have emerged as promising new biomarkers for diagnosis and prediction. Therefore, our study aims to explore the predictive value of these miRNAs for the pathological response to NAT in BC. By employing bioinformatic tools, we selected a set of miRNAs and evaluated their expression in plasma sEVs and BC biopsies. Twelve miRNAs were identified in sEVs, of which, miR-21-5p, 221-3p, 146a-5p and 26a-5p were significantly associated with the Miller-Payne (MP) pathological response to NAT. Moreover, miR-21-5p, 146a-5p, 26a-5p and miR-24-3p were independent as predictors of MP response to NAT. However, the expression of these miRNAs showed no correlation between sEVs and tissue samples, indicating that the mechanisms of miRNA sorting into sEVs still needs to be elucidated. Functional analysis of miRNA target genes and drug interactions revealed that candidate miRNAs and their targets, can be regulated by different NAT regimens. This evidence supports their role in governing the patients' therapy response and highlights their potential use as prediction biomarkers.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , MicroARNs/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Terapia Neoadyuvante , Biomarcadores
9.
J Cell Mol Med ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34132464

RESUMEN

Patients with relapsed/refractory acute myeloid leukaemia (AML), ineligible for intensive chemotherapy and allogeneic stem cell transplantation, have a dismal prognosis. For such cases, hypomethylating agents are a viable alternative, but with limited success. Combination chemotherapy using a hypomethylating agent plus another drug would potentially bring forward new alternatives. In the present manuscript, we present the cell and molecular background for a clinical scenario of a 44-year-old patient, diagnosed with high-grade serous ovarian carcinoma, diagnosed, and treated with a synchronous AML. Once the ovarian carcinoma relapsed, maintenance treatment with olaparib was initiated. Concomitantly, the bone marrow aspirate showed 30% myeloid blasts, consistent with a relapse of the underlying haematological disease. Azacytidine 75 mg/m2 treatment was started for seven days. The patient was administered two regimens of azacytidine monotherapy, additional to the olaparib-based maintenance therapy. After the second treatment, the patient presented with leucocytosis and 94% myeloid blasts on the bone marrow smear. Later, the patient unfortunately died. Following this clinical scenario, we reproduced in vitro the combination chemotherapy of azacytidine plus olaparib, to accurately assess the basic mechanisms of leukaemia progression, and resistance to treatment. Combination chemotherapy with drugs that theoretically target both malignancies might potentially be of use. Still, further research, both pre-clinical and clinical, is needed to accurately assess such cases.

10.
J Cell Mol Med ; 24(19): 11100-11110, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889753

RESUMEN

Primary myelofibrosis (PMF) is a Ph-negative myeloproliferative neoplasm (MPN), characterized by advanced bone marrow fibrosis and extramedullary haematopoiesis. The bone marrow fibrosis results from excessive proliferation of fibroblasts that are influenced by several cytokines in the microenvironment, of which transforming growth factor-ß (TGF-ß) is the most important. Micromechanics related to the niche has not yet been elucidated. In this study, we hypothesized that mechanical stress modulates TGF-ß signalling leading to further activation and subsequent proliferation and invasion of bone marrow fibroblasts, thus showing the important role of micromechanics in the development and progression of PMF, both in the bone marrow and in extramedullary sites. Using three PMF-derived fibroblast cell lines and transforming growth factor-ß receptor (TGFBR) 1 and 2 knock-down PMF-derived fibroblasts, we showed that mechanical stress does stimulate the collagen synthesis by the fibroblasts in patients with myelofibrosis, through the TGFBR1, which however seems to be activated through alternative pathways, other than TGFBR2.


Asunto(s)
Progresión de la Enfermedad , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/fisiopatología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Fenómenos Biomecánicos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/diagnóstico por imagen , Ratones Desnudos , Modelos Biológicos , Mielofibrosis Primaria/complicaciones , Mielofibrosis Primaria/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Estrés Mecánico
11.
Cell Physiol Biochem ; 54(4): 648-664, 2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32619350

RESUMEN

BACKGROUND/AIMS: Triple negative breast cancer (TNBC) is a highly aggressive form of cancer which lacks targeted therapy options. Thus, TNBC patients have poor outcomes and a decreased survival rate than patients with other types of breast cancers. Due to the lack of surface receptors, TNBC needs a comprehensive investigation to provide more information regarding patient's therapy, as well as to understand the way how to counteract drug resistance mechanisms. Nowadays, chemotherapy remains an unsolved issue which rise a lot of questions in oncology field. METHODS: In this article, we investigated the implication of paclitaxel in TNBC cell lines after a prolong administration, after 12, respectively 24 passages followed by evaluation of morphological alteration, mutational pattern by next generation sequencing and the altered gene expression pattern by microarray technology and validation by qRT-PCR of the resistance to therapy relevant genes. RESULTS: Using functional assays, we showed that paclitaxel exhibits antiproliferative activity on Hs578T/Pax and MDA-MB-231/Pax demonstrating the activation of cell death mechanisms. Confocal microscopy revealed significant modifications which occur in the morphological structure with a disruption of the actin-filaments and also mitotic catastrophe. The presence of these nuclear alterations is due to some modifications at the cellular and molecular levels. Important alterations at the transcriptomic and genomic levels were observed from this a common drug resistance signature (IL-6, CXCL8, VEGFA, EGR1, PTGS2 and TRIB1) for both cell lines at 24 passages was discovered. Also, an important mutation (TP53) linked with drug response was identified. CONCLUSION: These results might be used to furnish novel biomarkers in TNBC, as well as to find a strategy to counteract the resistance to therapy in order to increase survival rate and to enhance the prognosis of patients with TNBC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Muerte Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Paclitaxel/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Genómica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Cell Physiol Biochem ; 54(5): 994-1012, 2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33006449

RESUMEN

BACKGROUND/AIMS: Down syndrome associated disorders are caused by a complex genetic context where trisomy 21 is a central component in relation to other changes involving epigenetic regulators and signaling molecules. This unique genetic context is responsible for the predisposition of people with Down syndrome to acute leukemia. Although, the research in this field has discovered some important pathogenic keys, the exact mechanism of this predisposition is not known. METHODS: In this study we applied functional enrichment analysis to evaluate the interactions between genes localized on chromosome 21, genes already identify as having a key role in acute leukemia of Down syndrome, miRNAs and signaling pathways implicated in cancer and cell development and found that miR-155 has a high impact in genes present on chromosome 21. Forward, we performed next generation sequencing on DNA samples from a cohort of patients diagnosed with acute leukemia of Down syndrome and in vitro functional assay using a CMK-86 cell line, transfected with either mimic or inhibitor of the microRNA-155-5p. RESULTS: Our results show that the epigenetic alteration of the TNF superfamily receptors in Down syndrome, which can be correlated to microRNA-155-5p aberrant activity, may play an important role in cell signaling and thus be linked to acute myeloid leukemia. CONCLUSION: Some genes, already shown to be mutated in AML-DS, are potential targets for miR-155. Our results show that the epigenetic alteration of the TNF superfamily receptors in Down syndrome may play an important role in cell signaling and thus be linked to acute myeloid leukemia.


Asunto(s)
Síndrome de Down/complicaciones , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Reacción Leucemoide/patología , MicroARNs/genética , Receptores del Factor de Necrosis Tumoral/genética , Diferenciación Celular , Estudios de Cohortes , Síndrome de Down/etiología , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Reacción Leucemoide/etiología , Reacción Leucemoide/metabolismo , Masculino , Receptores del Factor de Necrosis Tumoral/metabolismo
13.
Mol Cell Biochem ; 475(1-2): 285-299, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888160

RESUMEN

Triple-negative breast cancer (TNBC), which accounts for 10-20% of all breast cancers, has the worst prognosis. Although chemotherapy treatment is a standard for TNBC, it lacks a specific target. Therefore, new therapeutic strategies are required to be investigated. In this study, a combined doxorubicin (DOX) and small interfering RNA (siRNA) therapy is proposed as therapeutic strategy for targeting TGFß1 gene. Hs578T cell line is used as in vitro model for TNBC, wherein TGFß1siRNA therapy is employed to enhance therapeutic effects. Cell proliferation rate is measured using an MTT test, and morphological alterations are assed using microscopically approached, while gene expression is determined by qRT-PCR analysis. The combined treatment of TGFß1siRNA and DOX reduced levels of cell proliferation and mitochondrial activity and promoted the alteration of cell morphology (dark-field microscopy). DOX treatment caused downregulation of six genes and upregulation of another six genes. The combined effects of DOX and TGFß1siRNA resulted in upregulation of 13 genes and downregulation of four genes. Silencing of TGFß1 resulted in activation of cell death mechanisms in Hs578T cells, to potentiate the effects of DOX, but not in an additive manner, due to the activation of genes involved in resistance to therapy (ABCB1 and IL-6).


Asunto(s)
Doxorrubicina/farmacología , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/terapia , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Proliferación Celular , Terapia Combinada , Bases de Datos Genéticas , Resistencia a Antineoplásicos , Femenino , Terapia Genética , Humanos , Ratones , Persona de Mediana Edad , Inhibidores de Topoisomerasa II/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
14.
Int J Mol Sci ; 21(20)2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-33080788

RESUMEN

Communications among cells can be achieved either via direct interactions or via secretion of soluble factors. The emergence of extracellular vesicles (EVs) as entities that play key roles in cell-to-cell communication offer opportunities in exploring their features for use in therapeutics; i.e., management and treatment of various pathologies, such as those used for cancer. The potential use of EVs as therapeutic agents is attributed not only for their cell membrane-bound components, but also for their cargos, mostly bioactive molecules, wherein the former regulate interactions with a recipient cell while the latter trigger cellular functions/molecular mechanisms of a recipient cell. In this article, we highlight the involvement of EVs in hallmarks of a cancer cell, particularly focusing on those molecular processes that are influenced by EV cargos. Moreover, we explored the roles of RNA species and proteins carried by EVs in eliciting drug resistance phenotypes. Interestingly, engineered EVs have been investigated and proposed as therapeutic agents in various in vivo and in vitro studies, as well as in several clinical trials.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/patología , Neoplasias/fisiopatología , Animales , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/terapia
15.
Molecules ; 25(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392837

RESUMEN

Walnut (Juglans regia L.) septum represents an interesting bioactive compound source by-product. In our study, a rich phenolic walnut septum extract, previously selected, was further examined. The tocopherol content determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed higher amounts of α-tocopherol compared to γ- and δ-tocopherols. Moreover, several biological activities were investigated. The in vitro inhibiting assessment against acetylcholinesterase, α-glucosidase, or lipase attested a real management potential in diabetes or obesity. The extract demonstrated very strong antimicrobial potential against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enteritidis. It also revealed moderate (36.08%) and strong (43.27%) antimutagenic inhibitory effects against TA 98 and TA 100 strains. The cytotoxicity of the extract was assessed on cancerous (A549, T47D-KBluc, MCF-7) and normal (human gingival fibroblasts (HGF)) cell lines. Flow cytometry measurements confirmed the cytotoxicity of the extract in the cancerous cell lines. Additionally, the extract demonstrated antioxidant activity on all four cell types, as well as anti-inflammatory activity by lowering the inflammatory cytokines (interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1 ß (IL-1ß)) evaluated in HGF cells. To the best of our knowledge, most of the cellular model analyses were performed for the first time in this matrix. The results prove that walnut septum may be a potential phytochemical source for pharmaceutical and food industry.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antimutagênicos/farmacología , Antioxidantes/farmacología , Juglans/química , Nueces/química , Tocoferoles/análisis , Antiinflamatorios/análisis , Antioxidantes/análisis , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de la Colinesterasa/análisis , Cromatografía Liquida , Inhibidores de Glicósido Hidrolasas/análisis , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipasa/antagonistas & inhibidores , Extractos Vegetales/análisis , Extractos Vegetales/química , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella enteritidis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Espectrometría de Masas en Tándem
16.
Medicina (Kaunas) ; 56(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255417

RESUMEN

Background and objectives: Mutational analysis has led to a better understanding of acute myeloid leukemia (AML) biology and to an improvement in clinical management. Some of the most important mutations that affect AML biology are represented by mutations in genes related to methylation, more specifically: TET2, IDH1, IDH2 and WT1. Because it has been shown in numerous studies that mutations in these genes lead to similar expression profiles and phenotypes in AML, we decided to assess if mutations in any of those genes interact with other genes important for AML. Materials and Methods: We downloaded the clinical data, mutational profile and expression profile from the TCGA LAML dataset via cBioPortal. Data were analyzed using classical statistical methods and functional enrichment analysis software represented by STRING and GOrilla. Results: The first step we took was to assess the 196 AML cases that had a mutational profile available and observe the mutations that overlapped with TET2/IDH1/2/WT1 mutations. We observed that RUNX1 mutations significantly overlap with TET2/IDH1/2/WT1 mutations. Because of this, we decided to further investigate the role of RUNX1 mutations in modulating the level of RUNX1 mRNA and observed that RUNX1 mutant cases presented higher levels of RUNX1 mRNA. Because there were only 16 cases of RUNX1 mutant samples and that mutations in this gene determined a change in mRNA expression, we further observed the correlation between RUNX1 and other mRNAs in subgroups regarding the presence of hypermethylating mutations and NPM1. Here, we observed that both TET2/IDH1/2/WT1 and NPM1 mutations increase the number of genes negatively correlated with RUNX1 and that these genes were significantly linked to myeloid activation. Conclusions: In the current study, we have shown that NPM1 and TET2/IDH1/2/WT1 mutations increase the number of negative correlations of RUNX1 with other transcripts involved in myeloid differentiation.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Mutación , Proteínas Nucleares/genética , Nucleofosmina , Pronóstico , Proteínas Proto-Oncogénicas/genética , Proteínas WT1/genética
17.
Medicina (Kaunas) ; 56(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198232

RESUMEN

Background and objective: The aim of the present study was to establish a new differentiation protocol using cannabidiol (CBD) and vitamin D3 (Vit. D3) for a better and faster osteogenic differentiation of dental tissue derived mesenchymal stem cells (MSCs). Materials and methods: MSCs were harvested from dental follicle (DFSCs), dental pulp (DPSCs), and apical papilla (APSCs) of an impacted third molar of a 17-year old patient. The stem cells were isolated and characterized using flow cytometry; reverse transcription polymerase chain reaction (RT-PCR); and osteogenic, chondrogenic, and adipogenic differentiation. The effects of CBD and Vit. D3 on osteogenic differentiation of dental-derived stem cell were evaluated in terms of viability/metabolic activity by alamar test, expression of collagen1A, osteopontin (OP), osteocalcin (OC), and osteonectin genes and by quantification of calcium deposits by alizarin red assay. Results: Stem cell characterization revealed more typical stemness characteristics for DFSCs and DPSCs and atypical morphology and markers expression for APSCs, a phenotype that was confirmed by differences in multipotential ability. The RT-PCR quantification of bone matrix proteins expression revealed a different behavior for each cell type, APSCs having the best response for CBD. DPSCs showed the best osteogenic potential when treated with Vit. D3. Cultivation of DFSC in standard stem cell conditions induced the highest expression of osteogenic genes, suggesting the spontaneous differentiation capacity of these cells. Regarding mineralization, alizarin red assay indicated that DFSCs and APSCs were the most responsive to low doses of CBD and Vit. D3. DPSCs had the lowest mineralization levels, with a slightly better response to Vit. D3. Conclusions: This study provides evidence that DFSCs, DPSCs, and APSCs respond differently to osteoinduction stimuli and that CBD and Vit. D3 can enhance osteogenic differentiation of these types of cells under certain conditions and doses.


Asunto(s)
Cannabidiol , Células Madre Mesenquimatosas , Adolescente , Cannabidiol/farmacología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colecalciferol/farmacología , Humanos , Osteogénesis
18.
Int J Mol Sci ; 20(17)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480720

RESUMEN

Lung cancer is the leading cause of cancer deaths worldwide. Therefore, for the prevention, diagnosis, prognosis and treatment of lung cancer, efficient preventive strategies and new therapeutic strategies are needed to face these challenges. Natural bioactive compounds and particular flavonoids compounds have been proven to have an important role in lung cancer prevention and of particular interest is the dose used for these studies, to underline the molecular effects and mechanisms at a physiological concentration. The purpose of this review was to summarize the current state of knowledge regarding relevant molecular mechanisms involved in the pharmacological effects, with a special focus on the anti-cancer role, by regulating the coding and non-coding genes. Furthermore, this review focused on the most commonly altered and most clinically relevant oncogenes and tumor suppressor genes and microRNAs in lung cancer. Particular attention was given to the biological effect in tandem with conventional therapy, emphasizing the role in the regulation of drug resistance related mechanisms.


Asunto(s)
Investigación Biomédica , Flavonoides/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Flavonoides/química , Flavonoides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , MicroARNs/genética , MicroARNs/metabolismo
19.
Int J Mol Sci ; 20(5)2019 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-30857282

RESUMEN

BACKGROUND: Phytochemicals are natural compounds synthesized as secondary metabolites in plants and represent an important source of molecules with therapeutic applications. Attention is accorded to their potential in anti-cancer therapies as single agents or adjuvant treatment. Herby, we evaluated the in vitro effects of a panel of natural compounds with focus on caffeic acid phenethyl ester (CAPE) and Kaempferol for the treatment of human colon cancer. METHODS: We exposed two human colon cancer cell lines, RKO and HCT-116, followed by functional examination of cell viability, cell proliferation and invasion, cell cycle, apoptosis, and autophagy. Modifications in gene expression were investigated through microarray and detection of existing mutations and finding of new ones was done with the help of Next Generation Sequencing (NGS). RESULTS: Both CAPE and Kaempferol inhibit cell proliferation, motility and invasion, and stimulate apoptosis and autophagy, concomitant with modifications in coding and noncoding genes' expression. Moreover, there are pathogenic mutations that are no longer found upon treatment with CAPE and Kaempferol. CONCLUSIONS: Our findings indicate that CAPE and Kaempferol have the ability to negatively influence the development and advancement of colon cancer in vitro by specifically altering the cells at the molecular level; this activity can be exploited in possible adjuvant therapies once the optimal dose concentration with minimal side effects but with cancer inhibitory activity is set in vivo.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Cafeicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Quempferoles/farmacología , Invasividad Neoplásica/prevención & control , Alcohol Feniletílico/análogos & derivados , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células HCT116 , Humanos , Invasividad Neoplásica/patología , Alcohol Feniletílico/farmacología
20.
Crit Rev Clin Lab Sci ; 55(7): 501-515, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30238808

RESUMEN

Even if considered a cumulative and not a proliferative CD5+ B-cell neoplasm, chronic lymphocytic leukemia (CLL) has a proliferation rate higher than that recognized earlier, especially in the lymphoid tissues. Some patients with CLL develop a clinical syndrome entitled Richter syndrome (RS). Understanding CLL genetics and epigenetics may help to elucidate the molecular basics of the clinical heterogeneity of this type of malignancy. In the present project we aimed to identify a microRNA species that can predict the evolution of therapy-resistant CLL towards RS. In the first phase of our study, microRNA-19b was identified as a possible target, and in the second phase, we transfected three different CLL cell lines with microRNA-19b mimic and inhibitor and assessed the potential role on leukemia cells in vitro. The mechanism by which miR-19b acts were identified as the upregulation of Ki67 and downregulation of p53. This was further supported through RT-PCR and western blotting on CLL cell lines, as well as by next generation sequencing on two patients diagnosed with CLL that evolved into RS.


Asunto(s)
Transformación Celular Neoplásica , Exosomas , Leucemia Linfocítica Crónica de Células B , MicroARNs , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Exosomas/química , Exosomas/metabolismo , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Masculino , MicroARNs/sangre , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Pronóstico , Síndrome , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA