Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant J ; 73(5): 836-49, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23181524

RESUMEN

Photorespiratory metabolism is essential in all oxygenic photosynthetic organisms. In plants, it is a highly compartmentalized pathway that involves chloroplasts, peroxisomes, mitochondria and the cytoplasm. The metabolic pathway itself is well characterized, and the enzymes required for its function have been identified. However, very little information is available on the transport proteins that catalyze the high metabolic flux between the involved compartments. Here we show that the A BOUT DE SOUFFLE (BOU) gene, which encodes a mitochondrial carrier, is involved in photorespiration in Arabidopsis. BOU was found to be co-expressed with photorespiratory genes in leaf tissues. The knockout mutant bou-2 showed the hallmarks of a photorespiratory growth phenotype, an elevated CO(2) compensation point, and excessive accumulation of glycine. Furthermore, degradation of the P-protein, a subunit of glycine decarboxylase, was demonstrated for bou-2, and is reflected in strongly reduced glycine decarboxylase activity. The photorespiration defect in bou-2 has dramatic consequences early in the seedling stage, which are highlighted by transcriptome studies. In bou-2 seedlings, as in shm1, another photorespiratory mutant, the shoot apical meristem organization is severely compromised. Cell divisions are arrested, leading to growth arrest at ambient CO(2) . Although the specific substrate for the BOU transporter protein remains elusive, we show that it is essential for the function of the photorespiratory metabolism. We hypothesize that BOU function is linked with glycine decarboxylase activity, and is required for normal apical meristems functioning in seedlings.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dióxido de Carbono/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo , Proteínas de Transporte de Membrana/genética , Meristema/genética , Aminoácidos/análisis , Aminoácidos/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Respiración de la Célula , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Glicina/metabolismo , Luz , Proteínas de Transporte de Membrana/metabolismo , Meristema/citología , Meristema/fisiología , Meristema/efectos de la radiación , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Fotosíntesis , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Plantones/citología , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
2.
Plant Physiol ; 152(4): 1851-62, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20172963

RESUMEN

Mitochondrial carrier family proteins are diverse in their substrate specificity, organellar location, and gene expression. In Arabidopsis (Arabidopsis thaliana), 58 genes encode these six-transmembrane-domain proteins. We investigated the biological role of the basic amino acid carrier Basic Amino Acid Carrier2 (BAC2) from Arabidopsis that is structurally and functionally similar to ARG11, a yeast ornithine and arginine carrier, and to Arabidopsis BAC1. By studying the expression of BAC2 and the consequences of its mutation in Arabidopsis, we showed that BAC2 is a genuine mitochondrial protein and that Arabidopsis requires expression of the BAC2 gene in order to use arginine. The BAC2 gene is induced by hyperosmotic stress (with either 0.2 m NaCl or 0.4 m mannitol) and dark-induced senescence. The BAC2 promoter contains numerous stress-related cis-regulatory elements, and the transcriptional activity of BAC2:beta-glucuronidase is up-regulated by stress and senescence. Under hyperosmotic stress, bac2 mutants express the P5CS1 proline biosynthetic gene more strongly than the wild type, and this correlates with a greater accumulation of Pro. Our data suggest that BAC2 is a hyperosmotic stress-inducible transporter of basic amino acids that contributes to proline accumulation in response to hyperosmotic stress in Arabidopsis.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Mutación , Prolina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Datos de Secuencia Molecular , Presión Osmótica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
3.
FEBS Lett ; 580(17): 4218-23, 2006 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-16839551

RESUMEN

Membrane rigidification could be the first step of cold perception in poikilotherms. We have investigated its implication in diacylglycerol kinase (DAGK) activation by cold stress in suspension cells from Arabidopsis mutants altered in desaturase activities. By lateral diffusion assay, we showed that plasma membrane rigidification with temperature decrease was steeper in cells deficient in oleate desaturase than in wild type cells and in cells overexpressing linoleate desaturase. The threshold for the activation of the DAGK pathway in each type of cells correlated with this order of rigidification rate, suggesting that cold induced-membrane rigidification is upstream of DAGK pathway activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Diacilglicerol Quinasa/metabolismo , Fluidez de la Membrana/fisiología , Mutación , Transducción de Señal/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Frío , Diacilglicerol Quinasa/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo
4.
Biochim Biophys Acta ; 1634(1-2): 52-60, 2003 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-14563413

RESUMEN

Phosphatidylinositol (PtdIns) synthase 1 from the plant Arabidopsis thaliana has been expressed in Escherichia coli in order to study the synthetic capacities of the enzyme. Analysis of the total fatty acid content of the bacteria shows that PtdIns synthase activity does not have a profound effect on the proportions of the different fatty acids produced, even if the presence of an extra acidic phospholipid leads to a global reduction of the lipid content. A closer analysis carried out on individual phospholipids reveals a global fatty acid composition almost unchanged in the two major bacterial lipids phosphatidylethanolamine (PtdEtn) and phosphatidylglycerol (PtdGro). Phosphatidylinositol has a very unusual composition that shows the ability of the plant enzyme to use CDP-diacylglycerol molecular species absent from plants. We identified the various PtdIns molecular species. They represent a pool of the major molecular species of PtdEtn and PtdGro. These results, together with the determination of the apparent affinity constants of AtPIS1 for myo-inositol and CDP-diacylglycerol, allow us to discuss some of the constraints of PtdIns synthesis in plants in terms of specificity, which will depend on the subcellular localization of the protein.


Asunto(s)
Arabidopsis/enzimología , Escherichia coli/metabolismo , Proteínas de Plantas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Proteínas de Arabidopsis , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa , Escherichia coli/genética , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Lípidos/química , Proteínas de la Membrana , Fosfatidilinositoles/metabolismo , Proteínas de Plantas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
5.
Front Plant Sci ; 5: 330, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076951

RESUMEN

In plants, basic amino acids are important for the synthesis of proteins and signaling molecules and for nitrogen recycling. The Arabidopsis nuclear gene BASIC AMINO ACID CARRIER 2 (BAC2) encodes a mitochondria-located carrier that transports basic amino acids in vitro. We present here an analysis of the physiological and genetic function of BAC2 in planta. When BAC2 is overexpressed in vivo, it triggers catabolism of arginine, a basic amino acid, leading to arginine depletion and urea accumulation in leaves. BAC2 expression was known to be strongly induced by stress. We found that compared to wild type plants, bac2 null mutants (bac2-1) recover poorly from hyperosmotic stress when restarting leaf expansion. The bac2-1 transcriptome differs from the wild-type transcriptome in control conditions and under hyperosmotic stress. The expression of genes encoding stress-related transcription factors (TF), arginine metabolism enzymes, and transporters is particularly disturbed in bac2-1, and in control conditions, the bac2-1 transcriptome has some hallmarks of a wild-type stress transcriptome. The BAC2 carrier is therefore involved in controlling the balance of arginine and arginine-derived metabolites and its associated amino acid metabolism is physiologically important in equipping plants to respond to and recover from stress.

6.
Eur J Biochem ; 269(9): 2347-52, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11985617

RESUMEN

In order to study some of its enzymatic properties, phosphatidylinositol synthase 1 (AtPIS1) from the plant Arabidopsis thaliana was expressed in Escherichia coli, a host naturally devoid of phosphatidylinositol (PtdIns). In the context of the bacterial membrane and in addition to de novo synthesis, the plant enzyme is capable of catalysing the exchange of the inositol polar head for another inositol. Our data clearly show that the CDP-diacylglycerol-independent exchange reaction can occur using endogenous PtdIns molecular species or PtdIns molecular species from soybean added exogenously. Exchange has been observed in the absence of cytidine monophosphate (CMP), but is greatly enhanced in the presence of 4 microm CMP. Our data also show that AtPIS1 catalyses the removal of the polar head in the presence of much higher concentrations of CMP, in a manner that suggests a reverse of synthesis. All of the PtdIns metabolizing activities require free manganese ions. EDTA, in the presence of low Mn2+ concentrations, also has an enhancing effect.


Asunto(s)
Arabidopsis/enzimología , Fosfatidilinositoles/biosíntesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa , Catálisis , Ácido Edético/farmacología , Manganeso/farmacología , Proteínas de la Membrana , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA