Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 289(44): 30772-30784, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25213860

RESUMEN

RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB, and RhoC) is actually required for the directed migration of primary cells is difficult to predict. Macrophages isolated from myeloid-restricted RhoA/RhoB (conditional) double knock-out (dKO) mice did not express RhoC and were essentially "pan-Rho"-deficient. Using real-time chemotaxis assays, we found that retraction of the trailing edge was dissociated from the advance of the cell body in dKO cells, which developed extremely elongated tails. Surprisingly, velocity (of the cell body) was increased, whereas chemotactic efficiency was preserved, when compared with WT macrophages. Randomly migrating RhoA/RhoB dKO macrophages exhibited multiple small protrusions and developed large "branches" due to impaired lamellipodial retraction. A mouse model of peritonitis indicated that monocyte/macrophage recruitment was, surprisingly, more rapid in RhoA/RhoB dKO mice than in WT mice. In comparison with dKO cells, the phenotypes of single RhoA- or RhoB-deficient macrophages were mild due to mutual compensation. Furthermore, genetic deletion of RhoB partially reversed the motility defect of macrophages lacking the RhoGAP (Rho GTPase-activating protein) myosin IXb (Myo9b). In conclusion, the Rho subfamily is not required for "front end" functions (motility and chemotaxis), although both RhoA and RhoB are involved in pulling up the "back end" and resorbing lamellipodial membrane protrusions. Macrophages lacking Rho proteins migrate faster in vitro, which, in the case of the peritoneum, translates to more rapid in vivo monocyte/macrophage recruitment.


Asunto(s)
Macrófagos Peritoneales/enzimología , Seudópodos/patología , Proteínas ras/genética , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoB/genética , Animales , Polaridad Celular , Células Cultivadas , Quimiotaxis , Femenino , Expresión Génica , Macrófagos Peritoneales/patología , Ratones , Ratones Noqueados , Miosinas/genética , Peritonitis/enzimología , Peritonitis/patología , Seudópodos/enzimología , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA , Proteína de Unión al GTP rhoB/metabolismo , Proteína rhoC de Unión a GTP
2.
J Biol Chem ; 287(13): 10650-10663, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22235111

RESUMEN

The function of P2X(7) receptors (ATP-gated ion channels) in innate immune cells is unclear. In the setting of Toll-like receptor (TLR) stimulation, secondary activation of P2X(7) ion channels has been linked to pro-caspase-1 cleavage and cell death. Here we show that cell death is a surprisingly early triggered event. We show using live-cell imaging that transient (1-4 min) stimulation of mouse macrophages with high extracellular ATP ([ATP]e) triggers delayed (hours) cell death, indexed as DEVDase (caspase-3 and caspase-7) activity. Continuous or transient high [ATP]e did not induce cell death in P2X(7)-deficient (P2X(7)(-/-)) macrophages or neutrophils (in which P2X(7) could not be detected). Blocking sustained Ca(2+) influx, a signature of P2X(7) ligation, was highly protective, whereas no protection was conferred in macrophages lacking caspase-1 or TLR2 and TLR4. Furthermore, pannexin-1 (Panx1) deficiency had no effect on transient ATP-induced delayed cell death or ATP-induced Yo-Pro-1 uptake (an index of large pore pathway formation). Thus, "transient" P2X(7) receptor activation and Ca(2+) overload act as a death trigger for native mouse macrophages independent of Panx1 and pro-inflammatory caspase-1 and TLR signaling.


Asunto(s)
Caspasa 1/metabolismo , Conexinas/metabolismo , Macrófagos Peritoneales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Adenosina Trifosfato/farmacología , Animales , Calcio/metabolismo , Caspasa 1/genética , Caspasa 1/inmunología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Conexinas/genética , Conexinas/inmunología , Macrófagos Peritoneales/inmunología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA