Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
New Phytol ; 241(2): 793-810, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37915139

RESUMEN

Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.


Asunto(s)
Medicago truncatula , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cobre/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564870

RESUMEN

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Asunto(s)
Sedum , Contaminantes del Suelo , Zinc/metabolismo , Cadmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte Iónico , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
3.
J Exp Bot ; 73(19): 6516-6524, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35876626

RESUMEN

Metal hyperaccumulation is an exclusive evolutionary trait contributing to efficient plant defence against biotic stress. The defence can be based on direct metal toxicity or the joint effects of accumulated metal and organic compounds, the latter being based on integrated signalling networks. While the role of metals in biotic stress defence of hyperaccumulators has been intensively studied, their role in the pathogen immunity of non-accumulator plants is far less understood. New findings show that in metal non-hyperaccumulating plants, localized hot spots of zinc, manganese, and iron increase plant immunity, while manipulation of nutrient availability may be used for priming against subsequent pathogen attack. Recent findings on the role of metals in plant-pathogen interactions are discussed considering the narrow line between deficiency and toxicity, host-pathogen nutrient competition and synergistic effects of simultaneous metal and biotic stress. We discuss the suitability of the direct-defence and joint-effects hypotheses in non-hyperaccumulating plants, and the involvement of metals as active centres of immunity-related enzymes. We also consider future challenges in revealing the mechanisms underlying metal-mediated plant immunity.


Asunto(s)
Metales Pesados , Oligoelementos , Plantas , Zinc/farmacología , Metales
4.
J Exp Bot ; 72(8): 3320-3336, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33544825

RESUMEN

Phomopsis. longicolla is a hemibiotrophic fungus causing significant soybean yield loss worldwide. To reveal the role of zinc in plant-pathogen interactions, soybean seedlings were grown hydroponically with a range of Zn concentrations, 0.06 µM (deficient, Zn0), 0.4 µM (optimal growth), 1.5 µM, 4 µM, 12 µM, and toxic 38 µM, and were subsequently inoculated with P. longicolla via the roots. In vivo analysis of metal distribution in tissues by micro-X-ray fluorescence showed local Zn mobilization in the root maturation zone in all treatments. Decreased root and pod biomass, and photosynthetic performance in infected plants treated with 0.4 µM Zn were accompanied with accumulation of Zn, jasmonoyl-L-isoleucine (JA-Ile), jasmonic acid, and cell wall-bound syringic acid (cwSyA) in roots. Zn concentration in roots of infected plants treated with 1.5 µM Zn was seven-fold higher than in the 0.4 µM Zn treatment, which together with accumulation of JA-Ile, cwSyA, cell wall-bound vanilic acid and leaf jasmonates contributed to maintaining photosynthesis and pod biomass. Host-pathogen nutrient competition and phenolics accumulation limited the infection in Zn-deficient plants. The low infection rate in Zn 4 µM-treated roots correlated with salicylic and 4-hydroxybenzoic acid, and cell wall-bound p-coumaric acid accumulation. Zn toxicity promoted pathogen invasion and depleted cell wall-bound phenolics. The results show that manipulation of Zn availability improves soybean resistance to P. longicolla by stimulating phenolics biosynthesis and stress-inducible phytohormones.


Asunto(s)
Glycine max , Zinc , Phomopsis , Raíces de Plantas , Plantones
5.
New Phytol ; 227(4): 1174-1188, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32285459

RESUMEN

Like pathogens, beneficial endophytic fungi secrete effector proteins to promote plant colonization, for example, through perturbation of host immunity. The genome of the root endophyte Serendipita indica encodes a novel family of highly similar, small alanine- and histidine-rich proteins, whose functions remain unknown. Members of this protein family carry an N-terminal signal peptide and a conserved C-terminal DELD motif. Here we report on the functional characterization of the plant-responsive DELD family protein Dld1 using a combination of structural, biochemical, biophysical and cytological analyses. The crystal structure of Dld1 shows an unusual, monomeric histidine zipper consisting of two antiparallel coiled-coil helices. Similar to other histidine-rich proteins, Dld1 displays varying affinity to different transition metal ions and undergoes metal ion- and pH-dependent unfolding. Transient expression of mCherry-tagged Dld1 in barley leaf and root tissue suggests that Dld1 localizes to the plant cell wall and accumulates at cell wall appositions during fungal penetration. Moreover, recombinant Dld1 enhances barley root colonization by S. indica, and inhibits H2 O2 -mediated radical polymerization of 3,3'-diaminobenzidine. Our data suggest that Dld1 has the potential to enhance micronutrient accessibility for the fungus and to interfere with oxidative stress and reactive oxygen species homeostasis to facilitate host colonization.


Asunto(s)
Histidina , Hordeum , Alanina , Basidiomycota , Hongos , Homeostasis , Hordeum/genética , Estrés Oxidativo , Enfermedades de las Plantas , Raíces de Plantas
6.
Plant Physiol ; 179(2): 369-381, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30563922

RESUMEN

Chlorophyll fluorescence kinetic analysis has become an important tool in basic and applied research on plant physiology and agronomy. While early systems recorded the integrated kinetics of a selected spot or plant, later systems enabled imaging of at least the slower parts of the kinetics (20-ms time resolution). For faster events, such as the rise from the basic dark-adapted fluorescence yield to the maximum (OJIP transient), or the fluorescence yield decrease during reoxidation of plastoquinone A after a saturating flash, integrative systems are used because of limiting speed of the available imaging systems. In our new macroscopic and microscopic systems, the OJIP or plastonique A reoxidation fluorescence transients are directly imaged using an ultrafast camera. The advantage of such systems compared to nonimaging measurements is the analysis of heterogeneity of measured parameters, for example between the photosynthetic tissue near the veins and the tissue further away from the veins. Further, in contrast to the pump-and-probe measurement, direct imaging allows for measuring the transition of the plant from the dark-acclimated to a light-acclimated state via a quenching analysis protocol in which every supersaturating flash is coupled to a measurement of the fast fluorescence rise. We show that pump-and-probe measurement of OJIP is prone to artifacts, which are eliminated with the direct measurement. The examples of applications shown here, zinc deficiency and cadmium toxicity, demonstrate that this novel imaging platform can be used for detection and analysis of a range of alterations of the electron flow around PSII.


Asunto(s)
Brassicaceae/metabolismo , Clorofila/metabolismo , Glycine max/metabolismo , Microscopía Fluorescente/métodos , Arabidopsis/citología , Arabidopsis/metabolismo , Brassicaceae/citología , Brassicaceae/efectos de los fármacos , Clorofila/química , Diseño de Equipo , Fluorescencia , Cinética , Células del Mesófilo/metabolismo , Microscopía Fluorescente/instrumentación , Fotosíntesis , Hojas de la Planta/citología , Plastoquinona/metabolismo , Glycine max/citología , Glycine max/efectos de los fármacos , Zinc/metabolismo
7.
J Exp Bot ; 71(4): 1628-1644, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31760430

RESUMEN

Solving the global environmental and agricultural problem of chronic low-level cadmium (Cd) exposure requires better mechanistic understanding. Here, soybean (Glycine max) plants were exposed to Cd concentrations ranging from 0.5 nM (background concentration, control) to 3 µM. Plants were cultivated hydroponically under non-nodulating conditions for 10 weeks. Toxicity symptoms, net photosynthetic oxygen production and photosynthesis biophysics (chlorophyll fluorescence: Kautsky and OJIP) were measured in young mature leaves. Cd binding to proteins [metalloproteomics by HPLC-inductively coupled plasma (ICP)-MS] and Cd ligands in light-harvesting complex II (LHCII) [X-ray absorption near edge structure (XANES)], and accumulation of elements, chloropyll, and metabolites were determined in leaves after harvest. A distinct threshold concentration of toxicity onset (140 nM) was apparent in strongly decreased growth, the switch-like pattern for nutrient uptake and metal accumulation, and photosynthetic fluorescence parameters such as Φ RE10 (OJIP) and saturation of the net photosynthetic oxygen release rate. XANES analyses of isolated LHCII revealed that Cd was bound to nitrogen or oxygen (and not sulfur) atoms. Nutrient deficiencies caused by inhibited uptake could be due to transporter blockage by Cd ions. The changes in specific fluorescence kinetic parameters indicate electrons not being transferred from PSII to PSI. Inhibition of photosynthesis combined with inhibition of root function could explain why amino acid and carbohydrate metabolism decreased in favour of molecules involved in Cd stress tolerance (e.g. antioxidative system and detoxifying ligands).


Asunto(s)
Cadmio , Glycine max , Cadmio/toxicidad , Clorofila , Fotosíntesis , Hojas de la Planta
8.
J Exp Bot ; 71(22): 7257-7269, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32841350

RESUMEN

Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


Asunto(s)
Arabidopsis , Medicago truncatula , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fijación del Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
9.
Anal Chem ; 91(17): 10961-10969, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31373479

RESUMEN

Techniques for metal speciation analysis with subnanomolar (ppt) detection limits in complex matrices, with simultaneous quantification of matrix elements, have become a necessity for investigating targets of trace metal binding to macromolecules and pigments at environmentally relevant concentrations. In this work we optimized the analysis of such metal binding in a custom-built HPLC-ICP-MS system. Key elements of the optimization were the choice of components for the metal-free HPLC-DAD system and sector-field ICP-MS detection (ICF-sfMS) with desolvating injection and optimization of sample handling. Protein analysis was done using ammonium bicarbonate buffer and size exclusion chromatography (SEC-ICP-sfMS), with possible addition of anion exchange chromatography. Detection of metal exchange in pigments (chlorophylls and bacteriochlorophylls) was based on reversed-phase chromatography with a methanol-acetone gradient and coupling to the ICP-sfMS via a dedicated organic matrix interface (RPC-ICP-sfMS). The resulting HPLC-DAD-ICP-sfMS system has detection limits in the picomolar range in protein buffer, limited by the maximal achievable purity of buffers/solvents and not by system sensitivity. Tests for method optimization showed that sonication, meant to increase protein solubilization, leads to artifacts of metal loss from metalloproteins. Examples for Cd binding to soybean proteins and chlorophyll, Cr binding to Arabidopsis thaliana proteins, La binding to Desmodesmus quadricauda proteins, and Cu binding to Rhodospirillum rubrum proteins and pigments are shown. These application examples demonstrate that the system is sensitive enough to detect binding of metals to proteins and pigments at background concentration levels of typical nutrient solutions made from analytical grade chemicals, equivalent to ultratrace metal concentrations in nonpolluted environments.

10.
Plant Physiol ; 174(3): 1633-1647, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28461400

RESUMEN

Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Germinación , Homeostasis , Hierro/metabolismo , Manganeso/metabolismo , Semillas/embriología , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Germinación/genética , Modelos Biológicos , Mutación/genética , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Semillas/genética , Espectrometría por Rayos X
11.
J Exp Bot ; 69(5): 909-954, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29447378

RESUMEN

Many trace metals are essential micronutrients, but also potent toxins. Due to natural and anthropogenic causes, vastly different trace metal concentrations occur in various habitats, ranging from deficient to toxic levels. Therefore, one focus of plant research is on the response to trace metals in terms of uptake, transport, sequestration, speciation, physiological use, deficiency, toxicity, and detoxification. In this review, we cover most of these aspects for the essential micronutrients copper, iron, manganese, molybdenum, nickel, and zinc to provide a broader overview than found in other recent reviews, to cross-link aspects of knowledge in this very active research field that are often seen in a separated way. For example, individual processes of metal usage, deficiency, or toxicity often were not mechanistically interconnected. Therefore, this review also aims to stimulate the communication of researchers following different approaches, such as gene expression analysis, biochemistry, or biophysics of metalloproteins. Furthermore, we highlight recent insights, emphasizing data obtained under physiologically and environmentally relevant conditions.


Asunto(s)
Metales/metabolismo , Plantas/metabolismo , Oligoelementos/metabolismo
12.
New Phytol ; 210(4): 1244-58, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26840406

RESUMEN

Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.


Asunto(s)
Cadmio/toxicidad , Magnoliopsida/fisiología , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Magnoliopsida/efectos de los fármacos , Magnoliopsida/efectos de la radiación , Superóxidos/metabolismo
13.
J Exp Bot ; 67(15): 4639-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27340233

RESUMEN

Arsenic (As) pollution is a serious concern worldwide. Recent studies under environmentally relevant conditions revealed that, in the aquatic plant Ceratophyllum demersum, pigments are the first observable target of toxicity, prior to any effect on photosynthetic parameters or to oxidative stress. Lethal toxicity was initiated by a change of As species and their distribution pattern in various tissues. Here, the localization of As was investigated at the subcellular level through X-ray fluorescence using a submicron beam and a Maia detector. Further, it was possible to obtain useful tissue structural information from the ratio of the tomogram of photon flux behind the sample to the tomogram of Compton scattering. The micro-X-ray fluorescence tomograms showed that As predominantly accumulated in the nucleus of the epidermal cells in young mature leaves exposed to sublethal 1 µM As. This suggests that As may exert toxic effects in the nucleus, for example, by interfering with nucleic acid synthesis by replacing phosphorous with As. At higher cellular concentrations, As was mainly stored in the vacuole, particularly in mature leaves. An analysis of precursors of chlorophyll and degradation metabolites revealed that the observed decrease in chlorophyll concentration was associated with hindered biosynthesis, and was not due to degradation. Coproporphyrinogen III could not be detected after exposure to only 0.5 µM As. Levels of subsequent precursors, for example, protoporphyrin IX, Mg-protoporphyrin, Mg-protoporphyrin methyl ester, and divinyl protochlorophyllide, were significantly decreased at this concentration as well, indicating that the pathway was blocked upstream of tetrapyrrole synthesis.


Asunto(s)
Arsénico/toxicidad , Clorofila/biosíntesis , Magnoliopsida/efectos de los fármacos , Clorofila/metabolismo , Magnoliopsida/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Espectrometría por Rayos X , Fracciones Subcelulares/metabolismo
14.
Plant Physiol ; 163(3): 1396-408, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24058164

RESUMEN

Although arsenic (As) is a common pollutant worldwide, many questions about As metabolism in nonhyperaccumulator plants remain. Concentration- and tissue-dependent speciation and distribution of As was analyzed in the aquatic plant Ceratophyllum demersum to understand As metabolism in nonhyperaccumulator plants. Speciation was analyzed chromatographically (high-performance liquid chromatography-[inductively coupled plasma-mass spectrometry]-[electrospray ionization-mass spectrometry]) in whole-plant extracts and by tissue-resolution confocal x-ray absorption near-edge spectroscopy in intact shock-frozen hydrated leaves, which were also used for analyzing cellular element distribution through x-ray fluorescence. Chromatography revealed up to 20 As-containing species binding more than 60% of accumulated As. Of these, eight were identified as thiol-bound (phytochelatins [PCs], glutathione, and cysteine) species, including three newly identified complexes: Cys-As(III)-PC2, Cys-As-(GS)2, and GS-As(III)-desgly-PC2. Confocal x-ray absorption near-edge spectroscopy showed arsenate, arsenite, As-(GS)3, and As-PCs with varying ratios in various tissues. The epidermis of mature leaves contained the highest proportion of thiol (mostly PC)-bound As, while in younger leaves, a lower proportion of As was thiol bound. At higher As concentrations, the percentage of unbound arsenite increased in the vein and mesophyll of young mature leaves. At the same time, x-ray fluorescence showed an increase of total As in the vein and mesophyll but not in the epidermis of young mature leaves, while this was reversed for zinc distribution. Thus, As toxicity was correlated with a change in As distribution pattern and As species rather than a general increase in many tissues.


Asunto(s)
Arsénico/metabolismo , Magnoliopsida/metabolismo , Extractos Vegetales/análisis , Hojas de la Planta/metabolismo , Arsénico/química , Cromatografía Líquida de Alta Presión , Cisteína/química , Cisteína/metabolismo , Glutatión/química , Glutatión/metabolismo , Magnoliopsida/química , Fitoquelatinas/química , Fitoquelatinas/metabolismo , Extractos Vegetales/química , Hojas de la Planta/química , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía de Absorción de Rayos X
15.
Biochim Biophys Acta Bioenerg ; 1865(1): 149015, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742749

RESUMEN

The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.


Asunto(s)
Metaloproteínas , Trichodesmium , Trichodesmium/metabolismo , Hierro/metabolismo , Metaloproteínas/metabolismo , Electrones , Aclimatación
16.
Biochim Biophys Acta Bioenerg ; 1865(1): 149018, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852568

RESUMEN

Low Zn availability in soils is a problem in many parts of the world, with tremendous consequences for food and feed production because Zn deficiency affects the yield and quality of plants. In this study we investigated the consequences of Zn-limitation in hydroponically cultivated soybean (Glycine max L.) plants. Parameters of photosynthesis biophysics were determined by spatially and spectrally resolved Kautsky and OJIP fluorescence kinetics and oxygen production at two time points (V4 stage, after five weeks, and pod development stage, R5-R6, after 8-10 weeks). Lower NPQ at 730 nm and lower quantum yield of electron transport flux until PSI acceptors were observed, indicating an inhibition of the PSI acceptor side. Metalloproteomics showed that down-regulation of Cu/Zn-superoxide dismutase (CuZnSOD) and Zn­carbonic anhydrase (CA) were primary consequences of Zn-limitation. This explained the effects on photosynthesis in terms of decreased use of excitons, which consequently led to oxidative stress. Indeed, untargeted metabolomics revealed an accumulation of lipid oxidation products in the Zn-deficient leaves. Further response to Zn deficiency included up-regulation of gene expression of cell wall metabolism, response to (a)biotic stressors and antioxidant activity, which correlated with accumulation of antioxidants, Vit B6, (iso)flavonoids and phytoalexins.


Asunto(s)
Clorofila , Glycine max , Transporte de Electrón , Glycine max/genética , Clorofila/metabolismo , Transcriptoma , Metaboloma , Antioxidantes , Zinc
17.
Plant Sci ; 343: 112060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460554

RESUMEN

Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 µM Zn) or manganese (3 µM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 µM Zn, 0.02 µM Mn) and control conditions (1 µM Zn, 0.6 µM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.


Asunto(s)
Capsicum , Micosis , Zinc , Capsicum/microbiología , Botrytis/fisiología , Acetofenonas , Enfermedades de las Plantas/microbiología
18.
Photosynth Res ; 116(1): 79-91, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23918299

RESUMEN

Changes of photosynthetic activity in vivo of individual heterocysts and vegetative cells in the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 during the course of diazotrophic acclimation were determined using fluorescence kinetic microscopy (FKM). Distinct phases of stress and acclimation following nitrogen step-down were observed. The first was a period of perception, in which the cells used their internally stored nitrogen without detectable loss of PS II activity or pigments. In the second, the stress phase of nitrogen limitation, the cell differentiation occurred and an abrupt decline of fluorescence yield was observed. This decline in fluorescence was not paralleled by a corresponding decline in photosynthetic pigment content and PS II activity. Both maximal quantum yield and sustained electron flow were not altered in vegetative cells, only in the forming heterocysts. The third, acclimation phase started first in the differentiating heterocysts with a recovery of PS II photochemical yields [Formula: see text] Afterwards, the onset of nitrogenase activity was observed, followed by the restoration of antenna pigments in the vegetative cells, but not in the heterocysts. Surprisingly, mature heterocysts were found to have an intact PS II as judged by photochemical yields, but a strongly reduced PS II-associated antenna as judged by decreased F 0. The possible importance of the functional PS II in heterocysts is discussed. Also, the FKM approach allowed to follow in vivo and evaluate the heterogeneity in photosynthetic performance among individual vegetative cells as well as heterocysts in the course of diazotrophic acclimation. Some cells along the filament (so-called "superbright cells") were observed to display transiently increased fluorescence yield, which apparently proceeded by apoptosis.


Asunto(s)
Anabaena/citología , Anabaena/fisiología , Clorofila/metabolismo , Microscopía Fluorescente/métodos , Fotosíntesis/fisiología , Análisis de la Célula Individual/métodos , Aclimatación/fisiología , Cinética , Nitrógeno/deficiencia , Pigmentos Biológicos/metabolismo , Estrés Fisiológico
19.
Environ Sci Technol ; 47(12): 6120-8, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23679092

RESUMEN

Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.


Asunto(s)
Cobre/toxicidad , Lamiaceae/metabolismo , Cobre/deficiencia , Cobre/metabolismo , Hierro/metabolismo , Lamiaceae/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta
20.
J Hazard Mater ; 442: 130062, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183514

RESUMEN

Soybean (Glycine max (L.) Merr.) plants were exposed to various Cd concentrations from background and low non-toxic (0.5-50 nM) via sublethally toxic (< 550 nM) to highly, ultimately lethally toxic (3 µM) concentrations. Plants were cultivated hydroponically for 10 weeks until pod development stage of the control plants. The threshold and mechanism of sublethal Cd toxicity was investigated by metabolomics and metalloproteomics (HPLC-ICP-MS) measuring metal binding to proteins in the harvested roots. Spatial distribution of Cd was revealed by µXRF-CT. Specific binding of Cd to proteins already at 50 nM Cd revealed the likely high-affinity protein binding targets in roots, identified by protein purification from natural abundance. This revealed allantoinase, aquaporins, peroxidases and protein disulfide isomerase as the most likely high-affinity targets of Cd binding. Cd was deposited in cortex cell vacuoles at sublethal and bound to the cell walls of the outer cortex and the vascular bundle at lethal Cd. Cd binding to proteins likely inhibits them, and possibly induces detoxification mechanisms, as verified by metabolomics: allantoic acid and allantoate increased due to sublethal Cd toxicity. Changes of the Cd binding pattern indicated a detoxification strategy at lower Cd, but saturated binding sites at higher Cd concentrations.


Asunto(s)
Cadmio , Glycine max , Glycine max/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Raíces de Plantas/metabolismo , Metaboloma , Peroxidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA