Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(5): e0020524, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38625022

RESUMEN

Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE: Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.


Asunto(s)
Amycolatopsis , Colorantes , Glicósidos , Colorantes/metabolismo , Colorantes/química , Glicósidos/metabolismo , Amycolatopsis/metabolismo , Amycolatopsis/genética , Amycolatopsis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Peroxidasas/metabolismo , Peroxidasas/genética , Peroxidasa/metabolismo , Peroxidasa/química , Peroxidasa/genética , Streptomyces lividans/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/enzimología , Especificidad por Sustrato
2.
J Sci Food Agric ; 103(10): 5171-5176, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965120

RESUMEN

BACKGROUND: Arabinoxylan is the main fiber component in corn and corn co-products that are commonly included in pig diets. However, this fiber fraction is resistant to enzymatic degradation in the gastrointestinal tract of pigs. Ferulic acid and p-coumaric acid are covalently linked to arabinoxylan, so it is likely that the majority of these hydroxycinnamic acids are excreted in feces. However, data to confirm this have not been reported. The objective of this research was therefore to quantify the ferulic and p-coumaric acids in a diet based on corn and soybean meal (SBM) and in a diet based on corn, SBM, and distillers' dried grains with solubles, as well as in feces from pigs fed these diets. RESULTS: The concentration of bound ferulic and coumaric acids in diets was greater in the corn-SBM-DDGS diet and in feces from pigs fed this diet than in the corn-SBM diet and feces from pigs fed that diet. The disappearance of free coumaric acids was greater (>85%) than that of bound phenolic acids (<50%) in both diets. The disappearance of free coumaric acid and bound ferulic acid in the intestinal tract of pigs was not different between the two diets. In contrast, disappearance of bound coumaric acid was greater (P < 0.05) in the corn-SBM diet than in the corn-SBM-DDGS diet. CONCLUSION: A diet based on corn and SBM contains less hydroxycinnamic acid than a corn-SBM-DDGS diet but bound phenolic acids are more resistant to digestion by pigs than free phenolic acids. © 2023 Society of Chemical Industry.


Asunto(s)
Ácidos Cumáricos , Zea mays , Porcinos , Animales , Ácidos Cumáricos/metabolismo , Zea mays/metabolismo , Digestión , Harina , Heces , Dieta/veterinaria , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Glycine max/metabolismo
3.
BMC Plant Biol ; 22(1): 63, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120456

RESUMEN

BACKGROUND: The polyphyletic group of seagrasses shows an evolutionary history from early monocotyledonous land plants to the marine environment. Seagrasses form important coastal ecosystems worldwide and large amounts of seagrass detritus washed on beaches might also be valuable bioeconomical resources. Despite this importance and potential, little is known about adaptation of these angiosperms to the marine environment and their cell walls. RESULTS: We investigated polysaccharide composition of nine seagrass species from the Mediterranean, Red Sea and eastern Indian Ocean. Sequential extraction revealed a similar seagrass cell wall polysaccharide composition to terrestrial angiosperms: arabinogalactans, pectins and different hemicelluloses, especially xylans and/or xyloglucans. However, the pectic fractions were characterized by the monosaccharide apiose, suggesting unusual apiogalacturonans are a common feature of seagrass cell walls. Detailed analyses of four representative species identified differences between organs and species in their constituent monosaccharide composition and lignin content and structure. Rhizomes were richer in glucosyl units compared to leaves and roots. Enhalus had high apiosyl and arabinosyl abundance, while two Australian species of Amphibolis and Posidonia, were characterized by high amounts of xylosyl residues. Interestingly, the latter two species contained appreciable amounts of lignin, especially in roots and rhizomes whereas Zostera and Enhalus were lignin-free. Lignin structure in Amphibolis was characterized by a higher syringyl content compared to that of Posidonia. CONCLUSIONS: Our investigations give a first comprehensive overview on cell wall composition across seagrass families, which will help understanding adaptation to a marine environment in the evolutionary context and evaluating the potential of seagrass in biorefinery incentives.


Asunto(s)
Adaptación Biológica/genética , Alismatales/química , Pared Celular/química , Hojas de la Planta/química , Raíces de Plantas/química , Polisacáridos/química , Zosteraceae/química , Alismatales/genética , Pared Celular/genética , Océano Índico , Biología Marina , Mar Mediterráneo , Hojas de la Planta/genética , Raíces de Plantas/genética , Polisacáridos/genética , Especificidad de la Especie , Zosteraceae/genética
4.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430284

RESUMEN

Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues.


Asunto(s)
Triticum , Xilanos , Filogenia , Xilanos/química
5.
Cellulose (Lond) ; 28(15): 9525-9545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720466

RESUMEN

Future biorefineries are facing the challenge to separate and depolymerize biopolymers into their building blocks for the production of biofuels and basic molecules as chemical stock. Fungi have evolved lignocellulolytic enzymes to perform this task specifically and efficiently, but a detailed understanding of their heterogeneous reactions is a prerequisite for the optimization of large-scale enzymatic biomass degradation. Here, we investigate the binding of cellulolytic enzymes onto biopolymers by surface plasmon resonance (SPR) spectroscopy for the fast and precise characterization of enzyme adsorption processes. Using different sensor architectures, SPR probes modified with regenerated cellulose as well as with lignin films were prepared by spin-coating techniques. The modified SPR probes were analyzed by atomic force microscopy and static contact angle measurements to determine physical and surface molecular properties. SPR spectroscopy was used to study the activity and affinity of Trichoderma reesei cellobiohydrolase I (CBHI) glycoforms on the modified SPR probes. N-glycan removal led to no significant change in activity or cellulose binding, while a slightly higher tendency for non-productive binding to SPR probes modified with different lignin fractions was observed. The results suggest that the main role of the N-glycosylation in CBHI is not to prevent non-productive binding to lignin, but probably to increase its stability against proteolytic degradation. The work also demonstrates the suitability of SPR-based techniques for the characterization of the binding of lignocellulolytic enzymes to biomass-derived polymers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10570-021-04002-6.

6.
Environ Microbiol ; 22(3): 1154-1166, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31876091

RESUMEN

Saprobic fungi, such as Aspergillus niger, grow as colonies consisting of a network of branching and fusing hyphae that are often considered to be relatively uniform entities in which nutrients can freely move through the hyphae. In nature, different parts of a colony are often exposed to different nutrients. We have investigated, using a multi-omics approach, adaptation of A. niger colonies to spatially separated and compositionally different plant biomass substrates. This demonstrated a high level of intra-colony differentiation, which closely matched the locally available substrate. The part of the colony exposed to pectin-rich sugar beet pulp and to xylan-rich wheat bran showed high pectinolytic and high xylanolytic transcript and protein levels respectively. This study therefore exemplifies the high ability of fungal colonies to differentiate and adapt to local conditions, ensuring efficient use of the available nutrients, rather than maintaining a uniform physiology throughout the colony.


Asunto(s)
Adaptación Fisiológica , Aspergillus niger/metabolismo , Carbono/metabolismo , Biomasa , Hifa/metabolismo , Pectinas/metabolismo
7.
Biopolymers ; 111(3): e23347, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31868924

RESUMEN

Enzymatic hydrolysis of biomass is an established method for producing biofuels. Lignocellulosic biomass such as corn stover is very inhomogeneous material with big variation on conversion rates between individual particles therefore leading to variable recalcitrance results. In this study, we used noninvasive optical microscopy techniques, such as two-photon microscopy and fluorescence lifetime imaging microscopy, to visualize and analyze morphological and chemical changes of individual corn stover particles pretreated with sulfuric acid during hydrolysis. Morphochemical changes were interpreted based on the fluorescence properties of isolated building blocks of plant cell wall, such as cellulose, hemicellulose, and lignin. Enzymatic hydrolysis resulted in particle size reduction, side wall collapse, decrease of second harmonic signal from cellulose, redshifting of autofluorescence emission, and lifetime decrease attributed to the relative increase of lignin. Based on these observations, tracking compositional change after hydrolysis of individual particles was accomplished. The methodologies developed offer a paradigm for imaging and analyzing enzymatic hydrolysis in vitro and in situ, which could be used for screening enzymes cocktails targeting specific recalcitrant structures or investigating locally enzyme anti-inhibitory agents.


Asunto(s)
Biomasa , Celulosa/metabolismo , Lignina/metabolismo , Imagen Óptica/métodos , Polisacáridos/metabolismo , Zea mays/metabolismo , Biocombustibles , Hidrólisis , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Espectrometría de Fluorescencia/métodos , Zea mays/enzimología
8.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835532

RESUMEN

In past years, new lytic polysaccharide monooxygenases (LPMOs) have been discovered as distinct in their substrate specificity. Their unconventional, surface-exposed catalytic sites determine their enzymatic activities, while binding sites govern substrate recognition and regioselectivity. An additional factor influencing activity is the presence or absence of a family 1 carbohydrate binding module (CBM1) connected via a linker to the C-terminus of the LPMO. This study investigates the changes in activity induced by shortening the second active site segment (Seg2) or removing the CBM1 from Neurospora crassa LPMO9C. NcLPMO9C and generated variants have been tested on regenerated amorphous cellulose (RAC), carboxymethyl cellulose (CMC) and xyloglucan (XG) using activity assays, conversion experiments and surface plasmon resonance spectroscopy. The absence of CBM1 reduced the binding affinity and activity of NcLPMO9C, but did not affect its regioselectivity. The linker was found important for the thermal stability of NcLPMO9C and the CBM1 is necessary for efficient binding to RAC. Wild-type NcLPMO9C exhibited the highest activity and strongest substrate binding. Shortening of Seg2 greatly reduced the activity on RAC and CMC and completely abolished the activity on XG. This demonstrates that Seg2 is indispensable for substrate recognition and the formation of productive enzyme-substrate complexes.


Asunto(s)
Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Neurospora crassa/enzimología , Sitios de Unión , Carboximetilcelulosa de Sodio/metabolismo , Dominio Catalítico , Celulosa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Oxigenasas de Función Mixta/genética , Neurospora crassa/genética , Eliminación de Secuencia , Resonancia por Plasmón de Superficie , Xilanos/metabolismo
9.
J Sci Food Agric ; 99(2): 957-965, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30125969

RESUMEN

BACKGROUND: This study investigated the ruminal degradability of various wheat straw types by the white-rot fungi Ceriporiopsis subvermispora (CS) and Lentinula edodes (LE). Different cultivars (CV) of wheat straw at different maturity stages (MS) were treated with the fungi for 7 weeks and assessed for chemical composition and in vitro gas production (IVGP). RESULTS: Both fungi showed a more pronounced degradation of lignin on a more mature straw (MS3; 89.0%) in comparison with the straw harvested at an earlier stage (MS1; 70.7%). Quantitative pyrolysis coupled to gas chromatography and mass spectrometry, using 13 C lignin as an internal standard 13 C-IS Py-GC/MS revealed that lignin in more mature straw was degraded and modified to a greater extent. In contrast, cellulose was less degraded in MS3, as compared to MS1 (8.3% versus 14.6%). There was no effect of different MS on the IVGP of the fungus-treated straws. Among the different straw cultivars, the extent of lignin degradation varied greatly (47% to 93.5%). This may explain the significant (P < 0.001) effect of cultivar on the IVGP of the fungal-treated straws. Regardless of the factors tested, both fungi were very capable of improving the IVGP of all straw types by 15.3% to 47.6%, (as compared to untreated straw), with CS performing better than LE - on different MS (33.6% versus 20.4%) and CVs (43.2% versus 29.1%). CONCLUSION: The extent of lignin degradation caused by fungal treatment was more pronounced on the more mature and lignified straw, while variable results were obtained with different cultivars. Both fungi were capable of improving the IVGP of various straw types. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Basidiomycota/metabolismo , Tallos de la Planta/metabolismo , Rumen/metabolismo , Hongos Shiitake/metabolismo , Triticum/microbiología , Alimentación Animal/microbiología , Animales , Bovinos , Celulosa/química , Celulosa/metabolismo , Digestión , Lignina/química , Lignina/metabolismo , Tallos de la Planta/química , Tallos de la Planta/microbiología , Triticum/química , Triticum/metabolismo
10.
J Sci Food Agric ; 99(8): 4054-4062, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30737799

RESUMEN

BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw. RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass. CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Basidiomycota/metabolismo , Pared Celular/química , Triticum/microbiología , Alimentación Animal/microbiología , Animales , Pared Celular/metabolismo , Pared Celular/microbiología , Celulosa/análisis , Celulosa/metabolismo , Digestión , Cromatografía de Gases y Espectrometría de Masas , Lignina/análisis , Lignina/metabolismo , Valor Nutritivo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Rumiantes , Triticum/química , Triticum/metabolismo
11.
Fungal Genet Biol ; 112: 12-20, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29277563

RESUMEN

The white button mushroom Agaricus bisporus is one of the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. We therefore focused our analysis on the stages where the fungus is producing fruiting bodies. Growth profiling was used to identify A. bisporus strains with different abilities to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.


Asunto(s)
Agaricus/crecimiento & desarrollo , Agaricus/metabolismo , Compostaje , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Perfilación de la Expresión Génica , Polisacáridos/metabolismo , Proteoma/análisis , Triticum/metabolismo , Triticum/microbiología
12.
Appl Microbiol Biotechnol ; 102(3): 1281-1295, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29196788

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) have recently been shown to significantly enhance the degradation of recalcitrant polysaccharides and are of interest for the production of biochemicals and bioethanol from plant biomass. The copper-containing LPMOs utilize electrons, provided by reducing agents, to oxidatively cleave polysaccharides. Here, we report the development of a ß-glucosidase-assisted method to quantify the release of C1-oxidized gluco-oligosaccharides from cellulose by two C1-oxidizing LPMOs from Myceliophthora thermophila C1. Based on this quantification method, we demonstrate that the catalytic performance of both MtLPMOs is strongly dependent on pH and temperature. The obtained results indicate that the catalytic performance of LPMOs depends on the interaction of multiple factors, which are affected by both pH and temperature.


Asunto(s)
Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Biocombustibles , Biomasa , Catálisis , Quitina/metabolismo , Cobre/metabolismo , Concentración de Iones de Hidrógeno , Lignina/metabolismo , Oligosacáridos/metabolismo , Oxidación-Reducción , Plantas/química , Sordariales/enzimología , Temperatura , beta-Glucosidasa/metabolismo
13.
Microsc Microanal ; 24(5): 517-525, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30334516

RESUMEN

Parameters such as pretreatment method, enzyme type and concentration, determine the conversion efficiency of biomass' cellulose and hemicellulose to glucose and mainly xylose in biomass-based fuel production. Chemical quantification of these processes offers no information on the effect of enzymatic hydrolysis (EH) on particle morphology. We report on the development of a microscopy method for imaging pretreated biomass particles at different EH stages. The method was based on acquiring large field of view images, typically 20×10 mm2 containing thousands of particles. Morphology of particles with lengths between 2 µm and 5 mm could be visualized and analyzed. The particle length distribution of corn stover samples, pretreated with increasing amounts of sulfuric acid at different EH stages, was measured. Particle size was shown to be dependent on pretreatment severity and EH time. The methodology developed could offer an alternative method for characterization of EH of biomass for second generation biofuels and visualization of recalcitrant structures.


Asunto(s)
Biomasa , Celulosa/química , Microscopía/métodos , Tamaño de la Partícula , Polisacáridos/química , Biocombustibles , Celulosa/metabolismo , Glucosa/metabolismo , Hidrólisis , Polisacáridos/metabolismo , Ácidos Sulfúricos , Zea mays/química
14.
J Sci Food Agric ; 98(1): 384-390, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28833149

RESUMEN

BACKGROUND: The relationship between the chemical and molecular properties - in particular the (acid detergent) lignin (ADL) content and composition expressed as the ratio between syringyl and guaiacyl compounds (S:G ratio) - of maize stems and in vitro gas production was studied in order to determine which is more important in the degradability of maize stem cell walls in the rumen of ruminants. Different internodes from two contrasting maize cultivars (Ambrosini and Aastar) were harvested during the growing season. RESULTS: The ADL content decreased with greater internode number within the stem, whereas the ADL content fluctuated during the season for both cultivars. The S:G ratio was lower in younger tissue (greater internode number or earlier harvest date) in both cultivars. For the gas produced between 3 and 20 h, representing the fermentation of cell walls in rumen fluid, a stronger correlation (R2 = 0.80) was found with the S:G ratio than with the ADL content (R2 = 0.68). The relationship between ADL content or S:G ratio and 72-h gas production, representing total organic matter degradation, was weaker than that with gas produced between 3 and 20 h. CONCLUSION: The S:G ratio plays a more dominant role than ADL content in maize stem cell wall degradation. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Pared Celular/metabolismo , Lignina/química , Tallos de la Planta/metabolismo , Rumiantes/metabolismo , Zea mays/metabolismo , Animales , Pared Celular/química , Lignina/metabolismo , Tallos de la Planta/química , Rumen/metabolismo , Zea mays/química
15.
Anal Chem ; 89(20): 10907-10916, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28926698

RESUMEN

Understanding the mechanisms underlying plant biomass recalcitrance at the molecular level can only be achieved by accurate analyses of both the content and structural features of the molecules involved. Current quantification of lignin is, however, majorly based on unspecific gravimetric analysis after sulfuric acid hydrolysis. Hence, our research aimed at specific lignin quantification with concurrent characterization of its structural features. Hereto, for the first time, a polymeric 13C lignin was used as internal standard (IS) for lignin quantification via analytical pyrolysis coupled to gas chromatography with mass-spectrometric detection in selected ion monitoring mode (py-GC-SIM-MS). In addition, relative response factors (RRFs) for the various pyrolysis products obtained were determined and applied. First, 12C and 13C lignin were isolated from nonlabeled and uniformly 13C labeled wheat straw, respectively, and characterized by heteronuclear single quantum coherence (HSQC), nuclear magnetic resonance (NMR), and py-GC/MS. The two lignin isolates were found to have identical structures. Second, 13C-IS based lignin quantification by py-GC-SIM-MS was validated in reconstituted biomass model systems with known contents of the 12C lignin analogue and was shown to be extremely accurate (>99.9%, R2 > 0.999) and precise (RSD < 1.5%). Third, 13C-IS based lignin quantification was applied to four common poaceous biomass sources (wheat straw, barley straw, corn stover, and sugar cane bagasse), and lignin contents were in good agreement with the total gravimetrically determined lignin contents. Our robust method proves to be a promising alternative for the high-throughput quantification of lignin in milled biomass samples directly and simultaneously provides a direct insight into the structural features of lignin.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Lignina/análisis , Triticum/metabolismo , Biomasa , Isótopos de Carbono/química , Cromatografía de Gases y Espectrometría de Masas/normas , Lignina/química , Lignina/normas , Tallos de la Planta/metabolismo , Pirólisis , Estándares de Referencia
16.
BMC Biotechnol ; 17(1): 44, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521816

RESUMEN

BACKGROUND: Endo-xylanases are essential in degrading hemicellulose of various lignocellulosic substrates. Hemicellulose degradation by Geobacillus spp. is facilitated by the hemicellulose utilization (HUS) locus that is present in most strains belonging to this genus. As part of the HUS locus, the xynA gene encoding an extracellular endo-xylanase is one of the few secreted enzymes and considered to be the key enzyme to initiate hemicellulose degradation. Several Geobacillus endo-xylanases have been characterized for their optimum temperature, optimum pH and generation of degradation products. However, these analyses provide limited details on the mode of action of the enzymes towards various substrates resulting in a lack of understanding about their hydrolytic potential. RESULTS: A HUS-locus associated gene (GtxynA1) from the thermophile Geobacillus thermodenitrificans T12 encodes an extracellular endo-xylanase that belongs to the family 10 glycoside hydrolases (GH10). The GtxynA1 gene was cloned and expressed in Escherichia coli. The resulting endo-xylanase (termed GtXynA1) was purified to homogeneity and showed activity between 40 °C and 80 °C, with an optimum activity at 60 °C, while being active between pH 3.0 to 9.0 with an optimum at pH 6.0. Its thermal stability was high and GtXynA1 showed 85% residual activity after 1 h of incubation at 60 °C. Highest activity was towards wheat arabinoxylan (WAX), beechwood xylan (BeWX) and birchwood xylan (BiWX). GtXynA1 is able to degrade WAX and BeWX producing mainly xylobiose and xylotriose. To determine its mode of action, we compared the hydrolysis products generated by GtXynA1 with those from the well-characterized GH10 endo-xylanase produced from Aspergillus awamori (AaXynA). The main difference in the mode of action between GtXynA1 and AaXynA on WAX is that GtXynA1 is less hindered by arabinosyl substituents and can therefore release shorter oligosaccharides. CONCLUSIONS: The G. thermodenitrificans T12 endo-xylanase, GtXynA1, shows temperature tolerance up to 80 °C and high activity to a variety of xylans. The mode of action of GtXynA1 reveals that arabinose substituents do not hamper substrate degradation by GtXynA1. The extensive hydrolysis of branched xylans makes this enzyme particularly suited for the conversion of a broad range of lignocellulosic substrates.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Geobacillus/enzimología , Xilanos/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Clonación Molecular , Endo-1,4-beta Xilanasas/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Monosacáridos/análisis , Oligosacáridos/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , Temperatura , Xilanos/análisis
17.
Appl Microbiol Biotechnol ; 101(11): 4363-4369, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28466110

RESUMEN

The white button mushroom Agaricus bisporus is economically the most important commercially produced edible fungus. It is grown on carbon- and nitrogen-rich substrates, such as composted cereal straw and animal manure. The commercial mushroom production process is usually performed in buildings or tunnels under highly controlled environmental conditions. In nature, the basidiomycete A. bisporus has a significant impact on the carbon cycle in terrestrial ecosystems as a saprotrophic decayer of leaf litter. In this mini-review, the fate of the compost plant cell wall structures, xylan, cellulose and lignin, is discussed. A comparison is made from the structural changes observed to the occurrence and function of enzymes for lignocellulose degradation present, with a special focus on the extracellular enzymes produced by A. bisporus. In addition, recent advancements in whole genome level molecular studies in various growth stages of A. bisporus in compost are reviewed.


Asunto(s)
Agaricus/enzimología , Celulosa/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Agaricus/genética , Agaricus/crecimiento & desarrollo , Animales , Carbono/metabolismo , Ciclo del Carbono , Genoma Fúngico , Micelio/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo , Xilanos/química
18.
Environ Microbiol ; 17(8): 3098-109, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26118398

RESUMEN

The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush.


Asunto(s)
Agaricus/metabolismo , Celulosa/metabolismo , Lignina/metabolismo , Microbiología del Suelo , Suelo , Madera/metabolismo , Agaricus/enzimología , Animales , Carbono/metabolismo , Europa (Continente) , Estadios del Ciclo de Vida , Datos de Secuencia Molecular , América del Norte , Plantas/metabolismo , Proteoma/genética , Proteómica , Transcriptoma/genética
19.
Poult Sci ; 93(4): 926-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24706970

RESUMEN

Unprocessed and acid-extruded rapeseed meal (RSM) was fed to broiler chickens, with and without addition of commercial pectolytic enzymes. Nonstarch polysaccharide (NSP) fermentability and unfermented NSP structures from RSM were studied in the excreta in detail. From unprocessed RSM, 24% of the nonglucose polysaccharides could be fermented. Acid treatment did not have a significant effect, but enzyme addition did improve fermentability to 38%. Most likely, the significant increase in NSP fermentability can be ascribed to the addition of pectolytic enzymes, which decreased branchiness of the water-soluble arabinan. Mainly xyloglucan, (glucurono-)xylan, (branched) arabinan, and cellulose remained in the excreta. The proportion of unextractable carbohydrates increased in excreta from broilers fed acid-extruded RSM. Probably, acid extrusion resulted in a less accessible NSP matrix, also decreasing the accessibility for pectolytic enzymes added in the diet. During alkaline extraction of the excreta, 39 to 52% (wt/wt) of the insoluble carbohydrates was released as glucosyl- and uronyl-rich carbohydrates, probably originally present via ester linkages or hydrogen bonding within the cellulose-lignin network. These linkages are expected to hinder complete NSP fermentation and indicate that digestibility of RSM may benefit substantially from an alkaline treatment or addition of esterases.


Asunto(s)
Brassica napus/metabolismo , Pollos/metabolismo , Digestión , Manipulación de Alimentos , Polisacáridos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pared Celular/química , Dieta/veterinaria , Enzimas/administración & dosificación , Enzimas/metabolismo , Femenino , Fermentación , Polisacáridos/administración & dosificación , Polisacáridos/química
20.
Carbohydr Polym ; 331: 121861, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388057

RESUMEN

Endo-xylanase and endo-glucanase are supplemented to poultry diets in order to improve nutrient digestion and non-starch polysaccharide (NSP) fermentation. Here, the action of these enzymes on alcohol insoluble solids (AIS) from wheat and maize grains as well as its implications for starch digestion in milled grains were evaluated in vitro, under conditions mimicking the poultry digestive tract. For wheat AIS, GH11 endo-xylanase depolymerized soluble arabinoxylan (AX) during the gizzard phase, and proceeded to release insoluble AX under small intestine conditions. At the end of the in vitro digestion (480 min), the endo-xylanase, combined with a GH7 endo-ß-1,4-glucanase, released 30.5 % of total AX and 18.1 % of total glucan in the form of arabinoxylo- and gluco-oligosaccharides, as detected by HPAEC-PAD and MALDI-TOF-MS. For maize AIS, the combined enzyme action released 2.2 % and 7.0 % of total AX and glucan, respectively. Analogous in vitro digestion experiments of whole grains demonstrated that the enzymatic release of oligomers coincided with altered grain microstructure, as examined by SEM. In the present study, cell wall hydrolysis did not affect in vitro starch digestion kinetics for cereal grains. This study contributes to understanding the action of feed enzymes on cereal NSP under conditions mimicking the poultry digestive tract.


Asunto(s)
Grano Comestible , Almidón , Animales , Almidón/análisis , Grano Comestible/química , Aves de Corral , Polisacáridos/análisis , Dieta , Glucanos/análisis , Digestión , Pared Celular , Alimentación Animal/análisis , Endo-1,4-beta Xilanasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA