Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Cell ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723165

RESUMEN

Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif (RRM) domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids. The PLD is required to support chloroplast RNA splicing and translation in cold-treated tissue. Together, our findings suggest that plant chloroplast gene expression is compartmentalized by inducible condensation of CP29A at low temperatures, a mechanism that could play a crucial role in plant cold resistance.

2.
Plant J ; 118(1): 203-224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38124335

RESUMEN

The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7-GFP that were not recovered in plants expressing an RNA-binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U-rich motif. Among the bound RNAs, circadian clock-regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll-binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose-dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half-life was shorter compared to wild-type plants whereas in atgrp7 mutant plants, the half-life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicina/metabolismo , ARN/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Nucleic Acids Res ; 51(2): 831-851, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36583366

RESUMEN

RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Biochem J ; 477(9): 1651-1668, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32227113

RESUMEN

Loss of function mutations in the PTEN-induced kinase 1 (PINK1) kinase are causal for autosomal recessive Parkinson's disease (PD) whilst gain of function mutations in the LRRK2 kinase cause autosomal dominant PD. PINK1 indirectly regulates the phosphorylation of a subset of Rab GTPases at a conserved Serine111 (Ser111) residue within the SF3 motif. Using genetic code expansion technologies, we have produced stoichiometric Ser111-phosphorylated Rab8A revealing impaired interactions with its cognate guanine nucleotide exchange factor and GTPase activating protein. In a screen for Rab8A kinases we identify TAK1 and MST3 kinases that can efficiently phosphorylate the Switch II residue Threonine72 (Thr72) in a similar manner as LRRK2 in vitro. Strikingly, we demonstrate that Ser111 phosphorylation negatively regulates the ability of LRRK2 but not MST3 or TAK1 to phosphorylate Thr72 of recombinant nucleotide-bound Rab8A in vitro and demonstrate an interplay of PINK1- and LRRK2-mediated phosphorylation of Rab8A in transfected HEK293 cells. Finally, we present the crystal structure of Ser111-phosphorylated Rab8A and nuclear magnetic resonance structure of Ser111-phosphorylated Rab1B. The structures reveal that the phosphorylated SF3 motif does not induce any major changes, but may interfere with effector-Switch II interactions through intramolecular H-bond formation and/or charge effects with Arg79. Overall, we demonstrate antagonistic regulation between PINK1-dependent Ser111 phosphorylation and LRRK2-mediated Thr72 phosphorylation of Rab8A indicating a potential cross-talk between PINK1-regulated mitochondrial homeostasis and LRRK2 signalling that requires further investigation in vivo.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fosforilación/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Trastornos Parkinsonianos/etiología , Trastornos Parkinsonianos/metabolismo , Serina/metabolismo , Treonina/metabolismo
5.
Proteins ; 84(1): 159-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26573739

RESUMEN

Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates.


Asunto(s)
Proteínas Quinasas Asociadas a Fase-S/química , Ubiquitina-Proteína Ligasas/química , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
J Mol Biol ; 434(21): 167830, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36116539

RESUMEN

Skp1(S-phase kinase-associated protein 1 - Homo sapiens) is an adapter protein of the SCF(Skp1-Cullin1-Fbox) complex, which links the constant components (Cul1-RBX) and the variable receptor (F-box proteins) in Ubiquitin E3 ligase. It is intriguing how Skp1 can recognise and bind to a variety of structurally different F-box proteins. For practical reasons, previous efforts have used truncated Skp1, and thus it has not been possible to track the crucial aspects of the substrate recognition process. In this background, we report the solution structure of the full-length Skp1 protein determined by NMR spectroscopy for the first time and investigate the sequence-dependent dynamics in the protein. The solution structure reveals that Skp1 has an architecture: ß1-ß2-H1-H2-L1-H3-L2-H4-H5-H6-H7(partially formed) and a long tail-like disordered C-terminus. Structural analysis using DALI (Distance Matrix Alignment) reveals conserved domain structure across species for Skp1. Backbone dynamics investigated using NMR relaxation suggest substantial variation in the motional timescales along the length of the protein. The loops and the C-terminal residues are highly flexible, and the (R2/R1) data suggests µs-ms timescale motions in the helices as well. Further, the dependence of amide proton chemical shift on temperature and curved profiles of their residuals indicate that the residues undergo transitions between native state and excited state. The curved profiles for several residues across the length of the protein suggest that there are native-like low-lying excited states, particularly for several C-terminal residues. Our results provide a rationale for how the protein can adapt itself, bind, and get functionally associated with other proteins in the SCF complex by utilising its flexibility and conformational sub-states.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Quinasas Asociadas a Fase-S , Proteínas Ligasas SKP Cullina F-box , Humanos , Estructura Secundaria de Proteína , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Intrínsecamente Desordenadas/química
7.
Biomol NMR Assign ; 10(2): 351-5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27394725

RESUMEN

Ubiquitination of proteins is required to regulate several cellular mechanisms in cells. Skp1-Cullin-1-F-box (SCF), the largest family of the RING E3 ligases, recognizes and carries out the poly-ubiquitination of many substrate proteins. SCF E3 ligase is a multi-component protein complex, and the human S-phase kinase-associated protein 1 (Skp1) is the adapter protein, which binds and presents the substrate binding protein F-box (FBP) to the rest of the E3 ligase. Several crystallographic studies have solved the partial structure of Skp1 in complex with various FBPs, but there is no structure of standalone Skp1. Understanding the conformational and structural properties of Skp1 with and without FBPs is required to understand the complete mechanism of poly-ubiquitination. Here, we report ~90 % backbone and 64 % side chain (1)H, (13)C, (15)N assignments of Skp1 protein using various double and triple resonance NMR experiments.


Asunto(s)
Ciclo Celular , Resonancia Magnética Nuclear Biomolecular , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Humanos , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA