Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Acc Chem Res ; 53(1): 2-10, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31809009

RESUMEN

Fluorine magnetic resonance imaging (19F MRI) is a promising bioimaging technique due to the favorable magnetic resonance properties of the 19F nucleus and the lack of detectable biological background signal. A range of imaging agents have been developed for this imaging modality including small molecule perfluorocarbons, fluorine-rich macromolecules and nanoparticles, and paramagnetic metal-containing agents. Incorporation of paramagnetic metals into fluorinated agents provides a unique opportunity to manipulate relaxation and chemical shift properties of 19F nuclei. Paramagnetic centers will enhance relaxation rates of nearby 19F nuclei through paramagnetic relaxation enhancement (PRE). Further, metals with anisotropic unpaired electrons can induce changes in 19F chemical shift through pseudocontact shift (PCS) effects. PRE and PCS are dependent on the nature of the metal center itself, the molecular scaffold surrounding it, and the position of the 19F nucleus relative to the metal center. One intriguing prospect in 19F magnetic resonance molecular imaging is to design responsive agents that can serve to provide a read out biological activity, including the activity of enzymes, redox activity, the activity of ions, etc. Paramagnetic agents are well suited for this activity-based sensing as metal complexes can be designed to respond to specific biological activities and give a corresponding 19F response that results from changes in the metal complex structure and subsequently PRE/PCS. Broadly speaking, when designing paramagnetic 19F MR biosensors, one can envision that in response to changes in analyte activity, the number of unpaired electrons of the metal changes or the ligand conformation/chemical composition changes. This Account highlights activity-based probes from the Que lab that harness paramagnetic metals to modulate 19F signal. We discuss probes that use conversion from Cu2+ to Cu+ in response to reducing environments to dequench the 19F MR signal. Probes in which oxidants convert Co2+ to Co3+, resulting in chemical shift responses, are also described. Finally, we explore our foray into using Ni2+ coordination switching to furnish probes with different 19F signals when they are converted between 4-coordinate square planar and higher coordination numbers. A major barrier for 19F MR molecular imaging is in vivo application, as signal sensitivity is relatively low, requiring long imaging times to detect imaging agents. Nanoparticle and macromolecular agents show promise due to their higher fluorine density and longer circulation times; however, their analyte scope is limited to analytes that induce cleavage events. A grand challenge for researchers in this area is adapting lessons learned from small molecule paramagnetic probes with promising in vitro activities for the development of probes with enhanced in vivo utility for basic biological and clinical applications.


Asunto(s)
Técnicas Biosensibles , Medios de Contraste/química , Complejos de Coordinación/química , Imagen por Resonancia Magnética , Imagen Molecular , Electrones , Flúor/química , Humanos
2.
Chemistry ; 27(38): 9839-9849, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33878230

RESUMEN

Targeting the low-oxygen (hypoxic) environments found in many tumours by using redox-active metal complexes is a strategy that can enhance efficacy and reduce the side effects of chemotherapies. We have developed a series of CuII complexes with tridentate pyridine aminophenolate-based ligands for preferential activation in the reduction window provided by hypoxic tissues. Furthermore, ligand functionalization with a pendant CF3 group provides a 19 F spectroscopic handle for magnetic-resonance studies of redox processes at the metal centre and behaviour in cellular environments. The phenol group in the ligand backbone was substituted at the para position with H, Cl, and NO2 to modulate the reduction potential of the CuII centre, giving a range of values below the window expected for hypoxic tissues. The NO2 -substituted complex, which has the highest reduction potential, showed enhanced cytotoxic selectivity towards HeLa cells grown under hypoxic conditions. Cell death occurs by apoptosis, as determined by analysis of the cell morphology. A combination of 19 F NMR and ICP-OES indicates localization of the NO2 complex in HeLa cell nuclei and increased cellular accumulation under hypoxia. This correlates with DNA nuclease activity being the likely origin of cytotoxic activity, as demonstrated by cleavage of DNA plasmids in the presence of the CuII nitro complex and a reducing agent. Selective detection of the paramagnetic CuII complexes and their diamagnetic ligands by 19 F MRI suggests hypoxia-targeting theranostic applications by redox activation.


Asunto(s)
Cobre , Compuestos Organometálicos , Núcleo Celular , Citotoxinas , Células HeLa , Humanos , Hipoxia , Ligandos , Espectroscopía de Resonancia Magnética , Compuestos Organometálicos/farmacología
3.
Angew Chem Int Ed Engl ; 59(50): 22523-22530, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32790890

RESUMEN

19 F magnetic resonance (MR) based detection coupled with well-designed inorganic systems shows promise in biological investigations. Two proof-of-concept inorganic probes that exploit a novel mechanism for 19 F MR sensing based on converting from low-spin (S=0) to high-spin (S=1) Ni2+ are reported. Activation of diamagnetic NiL1 and NiL2 by light or ß-galactosidase, respectively, converts them into paramagnetic NiL0 , which displays a single 19 F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin-state switch is effective for sensing light or enzyme expression in live cells using 19 F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for 19 F MR based biosensing.

4.
Chem Sci ; 14(19): 5099-5105, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37206407

RESUMEN

We report a first-in-class responsive, pentafluorosulfanyl (-SF5)-tagged 19F MRI agent capable of reversibly detecting reducing environments via an FeII/III redox couple. In the FeIII form, the agent displays no 19F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to FeII with one equivalent of cysteine, the agent displays a robust 19F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The -SF5 tag in this agent enables 'multicolor imaging' in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19F MR signal of this -SF5 agent and a hypoxia-responsive agent containing a -CF3 group.

5.
Dalton Trans ; 49(45): 16419-16424, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32692342

RESUMEN

We report two highly fluorinated Cu-based imaging agents, CuL1 and CuL2, for detecting cellular hypoxia as nanoemulsion formulations. Both complexes retained their initial quenched 19F MR signals due to paramagnetic Cu2+; however, both complexes displayed a large signal increase when the complex was reduced. DLS studies showed that the CuL1 nanoemulsion (NECuL1) had a hydrodiameter of approximately 100 nm and that it was stable for four weeks post-preparation. Hypoxic cells incubated with NECuL1 showed that 40% of the Cu2+ taken up was reduced in low oxygen environments.


Asunto(s)
Hipoxia de la Célula , Imagen por Resonancia Magnética con Fluor-19 , Halogenación , Nanoestructuras/química , Línea Celular , Emulsiones , Imagen Molecular
6.
Chem Commun (Camb) ; 56(46): 6257-6260, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32373870

RESUMEN

A fluorinated, thulium(iii) complex (Tm-PFZ-1) serves as an off-on 19F magnetic resonance probe for Zn(ii). Rapid exchange among different conformations combined with paramagnetic relaxation and chemical shift effects of Tm(iii) effectively eliminate the 19F NMR/MRI signal in Tm-PFZ-1. Chelation of Zn(ii) induces increased structural rigidity and reduces exchange rate, affording a robust 19F NMR/MRI signal. Tm-PFZ-1 represents a first-in-class paramagnetic 19F MR agent that exploits a novel sensing mechanism for Zn(ii) and is the first 19F MR-based scaffold to provide an "off-on" response to Zn(ii) in aqueous solution.

7.
Chem Commun (Camb) ; 55(60): 8860-8863, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31219109

RESUMEN

We report the first dual-responsive 19F MRI and fluorescence imaging probe for cellular hypoxia. The Cu2+-based probe exhibits no 19F MR signal and reduced fluorescence signal due to paramagnetic quenching; however, the probe turns-on in both modes following reduction to Cu+. This bimodal agent can differentiate hypoxic and normoxic cells in both modalities.


Asunto(s)
Hipoxia de la Célula/fisiología , Complejos de Coordinación/química , Fluoresceínas/química , Colorantes Fluorescentes/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Cobre/química , Fluoresceínas/síntesis química , Fluoresceínas/toxicidad , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/toxicidad , Flúor , Imagen por Resonancia Magnética con Fluor-19/métodos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Microscopía Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA