Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biosens Bioelectron ; 252: 116041, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401280

RESUMEN

A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the ß-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro/química , ADN de Cadena Simple/genética , Espectroscopía Dieléctrica , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , ADN/genética , ARN Mensajero , Expresión Génica , Impedancia Eléctrica
2.
Biosensors (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36831984

RESUMEN

This work presents an in vivo stem-mounted sensor for Nicotiana tabacum plants and an in situ cell suspension sensor for Solanum lycopersicum cells. Stem-mounted sensors are mechanically stable and less sensitive to plant and air movements than the previously demonstrated leaf-mounted sensors. Interdigitated-electrode-arrays with a dual working electrode configuration were used with an auxiliary electrode and an Ag/AgCl quasi-reference electrode. Signal amplification by redox cycling is demonstrated for a plant-based sensor responding to enzyme expression induced by different cues in the plants. Functional biosensing is demonstrated, first for constitutive enzyme expression and later, for heat-shock-induced enzyme expression in plants. In the cell suspension with redox cycling, positive detection of the enzyme ß-glucuronidase (GUS) was observed within a few minutes after applying the substrate (pNPG, 4-Nitrophenyl ß-D-glucopyranoside), following redox reactions of the product (p-nitrophenol (pNP)). It is assumed that the initial reaction is the irreversible reduction of pNP to p-hydroxylaminophenol. Next, it can be either oxidized to p-nitrosophenol or dehydrated and oxidized to aminophenol. Both last reactions are reversible and can be used for redox cycling. The dual-electrode redox-cycling electrochemical signal was an order of magnitude larger than that of conventional single-working electrode transducers. A simple model for the gain is presented, predicting that an even larger gain is possible for sub-micron electrodes. In summary, this work demonstrates, for the first time, a redox cycling-based in vivo plant sensor, where diffusion-based amplification occurs inside a tobacco plant's tissue. The technique can be applied to other plants as well as to medical and environmental monitoring systems.


Asunto(s)
Técnicas Biosensibles , Nicotiana , Oxidación-Reducción , Glucuronidasa , Electrodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
3.
Sci Rep ; 11(1): 19310, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588592

RESUMEN

An improved approach for comparative study of plant cells for long term and continuous monitoring using electrical impedance spectroscopy is demonstrated for tomato and tobacco plant cells (MSK8 and BY2) in suspensions. This approach is based on the locations and magnitudes of defining features in the impedance spectra of the recently reported unified equivalent circuit model. The ultra-wide range (4 Hz to 20 GHz) impedance spectra of the cell lines were measured using custom probes, and were analyzed using the unified equivalent circuit model, highlighting significant negative phase peaks in the ~ 1 kHz to ~ 10 MHz range. These peaks differ between the tomato and tobacco cells, and since they can be easily defined, they can potentially be used as the signal for differentiating between different cell cultures or monitoring them over time. These findings were further analysed, showing that ratios relating the resistances of the media and the resistance of the cells define the sensitivity of the method, thus affecting its selectivity. It was further shown that cell agglomeration is also an important factor in the impedance modeling in addition to the overall cell concentration. These results can be used for optimizing and calibrating electrical impedance spectroscopy-based sensors for long term monitoring of cell lines in suspension for a given specific cell and media types.


Asunto(s)
Agricultura/instrumentación , Espectroscopía Dieléctrica/instrumentación , Células Vegetales/química , Agricultura/métodos , Impedancia Eléctrica , Electrodos , Internet de las Cosas , Desarrollo Sostenible
4.
MethodsX ; 8: 101185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33384948

RESUMEN

Electrical impedance spectroscopy was performed on suspensions of plant cells in aqueous buffer media over a wide frequency range of 4 Hz to 20 GHz. Custom probes were designed, manufactured, and used for these investigations. Experiments were performed with a custom-made parallel plate probe and impedance analysers in the low-frequency range (4 Hz to 5 MHz), with a custom-made coaxial airline probe and a vector network analyser in the mid-frequency range (100 kHz to 3 GHz), and with a commercial open-ended probe and a vector network analyser in the high-frequency range (200 MHz to 20 GHz). The impedance data acquired were processed in order to eliminate the effects of parasitics and compensate for geometrical differences between the three probes. Following this, the data were fitted to a unified model consisting of the Randles and Debye models. The data were also normalized to a reference measurement, in order to accentuate the effects of cell concentration on the impedance of the suspensions.•The methodology allows for impedance spectroscopy of cell suspensions over a wide frequency range spanning 10 orders of magnitude.•It allows for compensation of parasitics and of geometrical variations between probes, using mathematical techniques.

5.
Biosens Bioelectron ; 168: 112485, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32896772

RESUMEN

A simple, ultra-wide frequency range, equivalent circuit for plant cell suspensions is presented. The model incorporates both the interfacial interactions of the suspension with the electrode, dominant at low frequencies, and the molecule and cell polarization mechanisms dominant at higher frequencies. Such model is useful for plant cell characterization allowing a single set of parameters over >9 orders of magnitude, whilst allows electronic simulations over the whole frequency range using a single model, simplifying the design of electronic systems of integrated plant cell sensors. The model has been experimentally validated in the frequency range of 4 Hz-20 GHz with each component in the circuit representing a physical phenomenon. Various cell concentrations (MSK8 tomato cells in Murashige and Skoog media) have been investigated, showing clear correlations of the cell capacitance increasing within the range of 200-600 pF, whilst cell resistance (R) decreasing within the range of approximately 0.8-3 kΩ within the cell concentration X-Y cells/mL range. This is the first model ever reported that covers such a wide frequency range and includes both interfacial and polarization effects in this simple form.


Asunto(s)
Técnicas Biosensibles , Espectroscopía Dieléctrica , Impedancia Eléctrica , Electrodos , Células Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA