Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 270: 110870, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721314

RESUMEN

In this study, elsmoreite/tungsten oxide is used to form a heterojunction with ZnS-containing industrial waste. The effect of the elsmoreite/tungsten oxide content on photocatalytic activity of ZnS using the different ratios of ZnS:Na2WO4 in the synthesis solution is estimated. The initial ZnS:Na2WO4 ratio leads to the formation of hexagonal WO3∙0.33H2O on the surface of ZnS. A further increase in the ZnS:Na2WO4 ratio results in the domination of cubic WO3∙0.5H2O over hexagonal WO3. The ultraviolet-visible (UV-Vis) diffuse reflectance spectra of elsmoreite/tungsten oxide@ZnS composite photocatalysts show that the absorption onset shifts monotonously towards lower wavelengths from 450 nm to 400 nm. The microrods of hexagonal WO3 and {111}-truncated submicron-sized crystals of WO3∙0.5H2O are grown on the ZnS surface. The transmission electron microscopy (TEM) results confirm the formation of a heterojunction between elsmoreite/tungsten oxide and ZnS. The photocatalytic activities of elsmoreite/tungsten oxide@ZnS composite photocatalysts are evaluated for the degradation of selected pharmaceuticals and personal care products (PPCPs): metoprolol - Mt, triclosan - TCS, and caffeine - CAF both in single and in mixture solutions. The elsmoreite/tungsten oxide@ZnS photocatalysts degrade 50% of Mt, 70% TCS, and 60% CAF in single solution and 35% of Mt, 20% of CAF, and 20% of TCS in mixture solution. Hydrated Mt and TCS are preferably adsorbed on the surface of WO3∙0.5H2O (111), and CAF has better affinity to the surface of WO3. The elsmoreite/tungsten oxide@ZnS photocatalysts show a good reusability. Hydroxyl radicals (•OH) and photogenerated holes (h+) are involved in the photocatalytic removal of Mt, while only h+ is involved in the photocatalytic removal of TCS. Interestingly, none of the above-mentioned species is involved in the photocatalytic removal of CAF. Also, nontoxic CAF is mainly degraded into intermediates with higher toxicity. The toxicity of the photocatalytically treated model wastewater in the mixture solution, tested with Vibrio fischeri, is much lower than that in the single solution.


Asunto(s)
Cosméticos , Tungsteno , Catálisis , Óxidos , Sulfuros , Compuestos de Zinc
2.
Artículo en Inglés | MEDLINE | ID: mdl-24679083

RESUMEN

The spherical granular activated carbon-carbon composites (GAC-Fe) with different iron oxide contents (Fe mass% = 0.6-10) were prepared by a pore volume impregnation method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2-adsorption results confirm the presence of amorphous iron oxide, pyrolytic carbon, and graphitized globular carbon nanoparticles covered with amorphous carbon in the CAG-Fe. The rate of photodegradation of methylene blue (MB) in aqueous solution under UV light in the presence of oxalic acid correlates with porosity of the prepared materials. The total MB removal includes the combination of adsorption and photodegradation without the addition of H2O2. The results of total organic carbon (TOC) analysis reveal that the decolorization of MB in aqueous solution containing oxalic acid corresponds to the decomposition of organic compounds to CO2 and H2O.


Asunto(s)
Compuestos Inorgánicos de Carbono/química , Compuestos Férricos/química , Azul de Metileno/aislamiento & purificación , Ácido Oxálico/química , Adsorción , Carbono/química , Carbón Orgánico/química , Peróxido de Hidrógeno/química , Microscopía Electrónica de Rastreo , Fotólisis/efectos de la radiación , Porosidad , Rayos Ultravioleta , Difracción de Rayos X
3.
ACS Omega ; 9(6): 7022-7033, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371832

RESUMEN

The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.

4.
J Hazard Mater ; 429: 128300, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35077970

RESUMEN

The use of antiviral drugs has surged as a result of the COVID-19 pandemic, resulting in higher concentrations of these pharmaceuticals in wastewater. The degradation efficiency of antiviral drugs in wastewater treatment plants has been reported to be too low due to their hydrophilic nature, and an additional procedure is usually necessary to degrade them completely. Photocatalysis is regarded as one of the most effective processes to degrade antiviral drugs. The present study aims at synthesizing multiphase photocatalysts by a simple calcination of industrial waste from ammonium molybdate production (WU photocatalysts) and its combination with WO3 (WW photocatalysts). The X-ray diffraction (XRD) results confirm that the presence of multiple crystalline phases in the synthesized photocatalysts. UV-Vis diffuse reflectance spectra reveal that the synthesized multiphase photocatalysts absorb visible light up to 620 nm. Effects of calcination temperature of industrial waste (550-950 °C) and WO3 content (0-100%) on photocatalytic activity of multiphase photocatalysts (WU and WW) for efficient removal of SARS-CoV-2 antiviral drugs (lopinavir and ritonavir) in model and real wastewaters are studied. The highest k1 value is observed for the photocatalytic removal of ritonavir from model wastewater using WW4 (35.64 ×10-2 min-1). The multiphase photocatalysts exhibit 95% efficiency in the photocatalytic removal of ritonavir within 15 of visible light irradiation. In contrast, 60 min of visible light irradiation is necessary to achieve 95% efficiency in the photocatalytic removal of lopinavir. The ecotoxicity test using zebrafish (Danio rerio) embryos shows no toxicity for photocatalytically treated ritonavir-containing wastewater, and the contrary trend is observed for photocatalytically treated lopinavir-containing wastewater. The synthesized multiphase photocatalysts can be tested and applied for efficient degradation of other SARS-CoV-2 antiviral drugs in wastewater in the future.


Asunto(s)
COVID-19 , Aguas Residuales , Animales , Antivirales , Catálisis , Humanos , Residuos Industriales , Pandemias , SARS-CoV-2 , Pez Cebra
5.
Environ Sci Pollut Res Int ; 21(6): 4309-19, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24310906

RESUMEN

TiO2-supported activated carbon felts (TiO2-ACFTs) were prepared by dip coating of felts composed of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) and/or a polyethylene pulp (PE-W15) in a TiO2 aqueous suspension followed by calcination at 250 °C for 1 h. The as-prepared TiO2-ACFTs with 29-35 wt.% TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. The TiO2-ACFT(PS-A20) samples with 0 and 29 wt.% TiO2 were microporous with specific surface areas (S BET) of 996 and 738 m(2)/g, respectively, whereas the TiO2-ACFT(PE-W15) samples with 0 and 35 wt.% TiO2 were mesoporous with S BET of 826 and 586 m(2)/g, respectively. Adsorption and photocatalytic activity of the as-prepared samples were evaluated by measuring adsorption in the dark and photodegradation of gaseous acetaldehyde (AcH) and methylene blue (MB) in aqueous solution under UV light. The TiO2 loading caused a considerable decrease in the S BET and MB adsorption capacity along with an increase in MB photodegradation and AcH mineralization. Lemna minor was chosen as a representative aquatic plant for ecotoxicity tests measuring detoxification of water obtained from the MB photodegradation reaction with the TiO2-ACFT samples under UV light.


Asunto(s)
Acetaldehído/análisis , Carbono/química , Azul de Metileno/análisis , Fotólisis , Polímeros/química , Titanio/química , Contaminantes Químicos del Agua/análisis , Acetaldehído/química , Acetaldehído/toxicidad , Adsorción , Fibra de Carbono , Carbón Orgánico/química , Azul de Metileno/química , Azul de Metileno/toxicidad , Modelos Químicos , Plantas/efectos de los fármacos , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA