Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Bone Miner Metab ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850283

RESUMEN

INTRODUCTION: Systemic osteogenesis has been speculated to be involved in the pathogenesis of ossification of the posterior longitudinal ligament (OPLL). Our purpose was to compare the radiologic prevalence and severity of heterotopic ossification in foot tendons of Japanese patients with OPLL and to determine their association with systemic heterotopic ossification. MATERIALS AND METHODS: Clinical and radiographic data of 114 patients with OPLL were collected from 2020 to 2022. Control data were extracted from a medical database of 362 patients with ankle radiographs. Achilles and plantar tendon ossification were classified as grades 0-4, and the presence of osteophytes at five sites in the foot/ankle joint was assessed by radiography. Factors associated with the presence and severity of each ossification were evaluated by multivariable logistic regression and linear regression analysis. RESULTS: The prevalence of Achilles and plantar tendon ossification (grade ≥ 2) was 4.0-5.5 times higher in patients with OPLL (40-56%) than in the controls (10-11%). The presence of Achilles tendon ossification was associated with OPLL, age, and coexisting plantar tendon ossification, and was most strongly associated with OPLL (standardized regression coefficient, 0.79; 95% confidence interval, 1.34-2.38). The severity of Achilles and plantar tendon ossification was associated with the severity of ossification of the entire spinal ligament. CONCLUSIONS: The strong association of foot tendon ossification with OPLL suggests that patients with OPLL have a systemic osteogenesis background. These findings will provide a basis for exploring new treatment strategies for OPLL, including control of metabolic abnormalities.

2.
Cell Mol Neurobiol ; 43(5): 2165-2178, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36222946

RESUMEN

Although evidence has accumulated to indicate that Schwann cells (SCs) differentiate into repair SCs (RSCs) upon injury and that the unique phenotype of these cells allow them to provide support for peripheral nerve regeneration, the details of the RSCs are not fully understood. The findings of the current study indicate that the RSCs have enhanced adherent properties and a greater capability to promote neurite outgrowth and axon regeneration after peripheral nerve injury, compared to the non-RSCs. Further, transcriptome analyses have demonstrated that the molecular signature of the RSCs is distinctly different from that of the non-RSCs. The RSCs upregulate a group of genes that are related to inflammation, repair, and regeneration, whereas non-RSCs upregulate genes related to myelin maintenance, Notch, and aging. These findings indicate that the RSCs have markedly different cellular, regenerative, and molecular characteristics compared to the non-RSCs, even though the RSCs were just derived from non-RSCs upon injury, thus providing the basis for understanding the mechanisms related to SC mediated repair after peripheral nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/terapia , Axones , Regeneración Nerviosa/fisiología , Células de Schwann/fisiología , Nervios Periféricos
3.
Exp Physiol ; 108(4): 621-635, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36852508

RESUMEN

NEW FINDINGS: What is the central question of this study? Although fibroblasts are involved in the regenerative process associated with peripheral nerve injury, detailed information regarding their characteristics is largely lacking. What is the main finding and its importance? Nerve-derived fibroblasts have a greater neurite-promoting effect than skin-derived fibroblasts, and epineurium-derived fibroblasts can promote neurite outgrowth more effectively than parenchyma-derived fibroblasts. The epineurium-derived fibroblasts and parenchyma-derived fibroblasts have distinctly different molecular profiles, including genes of soluble factors to promote axonal growth. Fibroblasts are molecularly and functionally different depending on their localization in nerve tissue, and epineurium-derived fibroblasts might be involved in axon regeneration after peripheral nerve injury more than previously thought. ABSTRACT: Although fibroblasts (Fb) are components of a peripheral nerve involved in the regenerative process associated with peripheral nerve injury, detailed information regarding their characteristics is largely lacking. The objective of the present study was to investigate the capacity of Fb derived from peripheral nerves to stimulate the outgrowth of neurites from adult dorsal root ganglion neurons and to clarify their molecular characteristics. Fibroblasts were prepared from the epineurium and parenchyma of rat sciatic nerves and skin. The Fb derived from epineurium showed the greatest effect on neurite outgrowth, followed by the Fb derived from parenchyma, indicating that Fb derived from nerves promote neurite outgrowth more effectively than skin-derived Fb. Although both soluble and cell-surface factors contributed evenly to the neurite-promoting effect of nerve-derived Fb, in crush and transection injury models, Fb were not closely associated with regenerating axons, indicating that only soluble factors from Fb are available to regenerating axons. A transcriptome analysis revealed that the molecular profiles of these Fb were distinctly different and that the gene expression profiles of soluble factors that promote axonal growth are unique to each Fb. These findings indicate that Fb are molecularly and functionally different depending on their localization in nerve tissue and that Fb derived from epineurium might be involved more than was previously thought in axon regeneration after peripheral nerve injury.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Ratas , Animales , Axones/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Ganglios Espinales/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Nervio Ciático/metabolismo , Fibroblastos/metabolismo , Proyección Neuronal , Células Cultivadas
4.
Cell Mol Life Sci ; 79(6): 289, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536429

RESUMEN

Accumulating evidences suggest that M2 macrophages are involved with repair processes in the nervous system. However, whether M2 macrophages can promote axon regeneration by directly stimulating axons nor its precise molecular mechanism remains elusive. Here, the current study demonstrated that typical M2 macrophages, which were generated by IL4 simulation, had the capacity to stimulate axonal growth by their direct effect on axons and that the graft of IL4 stimulated macrophages into the region of Wallerian degeneration enhanced axon regeneration and improved functional recovery after PNI. Importantly, uPA (urokinase plasminogen activator)-uPA receptor (uPAR) was identified as the central axis underlying the axon regeneration effect of IL4 stimulated macrophages. IL4 stimulated macrophages secreted uPA, and its inhibition abolished their axon regeneration effect. Injured but not intact axons expressed uPAR to be sensitive to uPA. These results unveil a cellular and molecular mechanism underlying the macrophage related axon regeneration and provide a basis of a novel therapy for PNI.


Asunto(s)
Traumatismos de los Nervios Periféricos , Activador de Plasminógeno de Tipo Uroquinasa , Axones/fisiología , Humanos , Interleucina-4/farmacología , Macrófagos/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/terapia , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética
5.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555713

RESUMEN

Although rodents have been widely used for experimental models of spinal cord diseases, the details of the growth curves of their spinal canal and spinal cord, as well as the molecular mechanism of the growth of adult rat spinal cords remain unavailable. They are particularly important when conducting the experiments of cervical spondylotic myelopathy (CSM), since the disease condition depends on the size of the spinal canal and the spinal cord. Thus, the purposes of the present study were to obtain accurate growth curves for the spinal canal and spinal cord in rats; to define the appropriate age in weeks for their use as a CSM model; and to propose a molecular mechanism of the growth of the adult spinal cord in rats. CT myelography was performed on Lewis rats from 4 weeks to 40 weeks of age. The vertical growth of the spinal canal at C5 reached a plateau after 20 and 12 weeks, and at T8 after 20 and 16 weeks, in males and females, respectively. The vertical growth of the C5 and T8 spinal cord reached a plateau after 24 weeks in both sexes. The vertical space available for the cord (SAC) of C5 and T8 did not significantly change after 8 weeks in either sex. Western blot analyses showed that VEGFA, FGF2, and BDNF were highly expressed in the cervical spinal cords of 4-week-old rats, and that the expression of these growth factors declined as rats grew. These findings indicate that the spinal canal and the spinal cord in rats continue to grow even after sexual maturation and that rats need to be at least 8 weeks of age for use in experimental models of CSM. The present study, in conjunction with recent evidence, proposes the hypothetical model that the growth of rat spinal cord after the postnatal period is mediated at least in part by differentiation of neural progenitor cells and that their differentiation potency is maintained by VEGFA, FGF2, and BDNF.


Asunto(s)
Maduración Sexual , Canal Medular , Médula Espinal , Animales , Femenino , Masculino , Ratas , Factor Neurotrófico Derivado del Encéfalo/genética , Factor 2 de Crecimiento de Fibroblastos , Imagen por Resonancia Magnética , Ratas Endogámicas Lew , Canal Medular/crecimiento & desarrollo , Médula Espinal/crecimiento & desarrollo , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal
6.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163708

RESUMEN

Bone is a mineralized and elastic connective tissue that provides fundamental functions in the human body, including mechanical support to the muscles and joints, protection of vital organs and storage of minerals. Bone is a metabolically active organ that undergoes continuous remodeling processes to maintain its architecture, shape, and function throughout life. One of the most important medical discoveries of recent decades has been that the immune system is involved in bone remodeling. Indeed, chronic inflammation has been recognized as the most significant factor influencing bone homeostasis, causing a shift in the bone remodeling process toward pathological bone resorption. Bone osteolytic diseases typified by excessive bone resorption account for one of the greatest causes of disability worldwide, with significant economic and public health burdens. From this perspective, we discuss the recent findings and discoveries highlighting the cellular and molecular mechanisms that regulate this process in the bone microenvironment, in addition to the current therapeutic strategies for the treatment of osteolytic bone diseases.


Asunto(s)
Resorción Ósea/fisiopatología , Inflamación , Humanos , Osteoclastos/fisiología
7.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743104

RESUMEN

Despite recent advancements in therapeutic options for disorders of the central nervous system (CNS), the lack of an efficient drug-delivery system (DDS) hampers their clinical application. We hypothesized that liposomes could be optimized for retrograde transport in axons as a DDS from peripheral tissues to the spinal cord and dorsal root ganglia (DRGs). Three types of liposomes consisting of DSPC, DSPC/POPC, or POPC in combination with cholesterol (Chol) and polyethylene glycol (PEG) lipid were administered to sciatic nerves or the tibialis anterior muscle of mature rats. Liposomes in cell bodies were detected with infrared fluorescence of DiD conjugated to liposomes. Three days later, all nerve-administered liposomes were retrogradely transported to the spinal cord and DRGs, whereas only muscle-administered liposomes consisting of DSPC reached the spinal cord and DRGs. Modification with Cholera toxin B subunit improved the transport efficiency of liposomes to the spinal cord and DRGs from 4.5% to 17.3% and from 3.9% to 14.3% via nerve administration, and from 2.6% to 4.8% and from 2.3% to 4.1% via muscle administration, respectively. Modification with octa-arginine (R8) improved the transport efficiency via nerve administration but abolished the transport capability via muscle administration. These findings provide the initial data for the development of a novel DDS targeting the spinal cord and DRGs via peripheral administration.


Asunto(s)
Transporte Axonal , Ganglios Espinales , Animales , Grupos Diagnósticos Relacionados , Liposomas , Fosfolípidos , Ratas , Médula Espinal
8.
Nat Methods ; 15(9): 723-731, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082899

RESUMEN

Spinal cord neural stem cells (NSCs) have great potential to reconstitute damaged spinal neural circuitry, but they have yet to be generated in vitro. We now report the derivation of spinal cord NSCs from human pluripotent stem cells (hPSCs). Our observations show that these spinal cord NSCs differentiate into a diverse population of spinal cord neurons occupying multiple positions along the dorso-ventral axis, and can be maintained for prolonged time periods. Grafts into injured spinal cords were rich with excitatory neurons, extended large numbers of axons over long distances, innervated their target structures, and enabled robust corticospinal regeneration. The grafts synaptically integrated into multiple host intraspinal and supraspinal systems, including the corticospinal projection, and improved functional outcomes after injury. hPSC-derived spinal cord NSCs could enable a broad range of biomedical applications for in vitro disease modeling and constitute an improved clinically translatable cell source for 'replacement' strategies in several spinal cord disorders.


Asunto(s)
Células-Madre Neurales/patología , Células Madre Pluripotentes/patología , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Linaje de la Célula , Humanos
9.
BMC Geriatr ; 21(1): 523, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600495

RESUMEN

BACKGROUND: Gait was proved to be strongly associated with global cognitive function and multiple cognitive domains; however, previous research usually concentrated on individual gait parameters. This study used wearable sensors to measure gait parameters in different aspects and comprehensively explored the association of gait with global cognitive function and cognitive domains. METHODS: The data of this cross-sectional study were obtained from 236 community-dwelling Japanese older adults (125 men and 111 women) aged 70-81 years. Gait was measured by asking participants to walk a 6-m course and back using the Physilog® sensors (GaiUp®, Switzerland). Global cognitive function and cognitive domains were evaluated by face-to-face interviews using the Japanese version of the Montreal Cognitive Assessment. Twenty gait parameters were summarized as independent gait factors using factor analysis. A generalized linear model and linear regression model were used to explore the relationship of gait with global cognitive function and cognitive domains adjusted for several confounding factors. RESULTS: Factor analysis yielded four gait factors: general cycle, initial contact, propulsion, and mid-swing. Among them, general cycle factor was significantly associated with global cognitive function (ß = - 0.487, [- 0.890, - 0.085]) and executive function (P = 0.049); initial contact was associated with executive function (P = 0.017). CONCLUSION: General cycle of gait might be the better marker of global cognitive function and gait is most strongly associated with executive function. The longitudinal relationships should be examined in future cohort studies.


Asunto(s)
Disfunción Cognitiva , Vida Independiente , Anciano , Cognición , Estudios Transversales , Función Ejecutiva , Femenino , Marcha , Humanos , Masculino
10.
J Orthop Sci ; 25(6): 1084-1092, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32173180

RESUMEN

BACKGROUND: The locomotive syndrome risk test was developed to quantify the decrease in mobility among adults, which could eventually lead to disability. The purpose of this study was to establish reference values for the locomotive syndrome risk test for adults and investigate the influence of age and sex. METHODS: We analyzed 8681 independent community dwellers (3607 men, 5074 women). Data pertaining to locomotive syndrome risk test (the two-step test, the stand-up test, and the 25-question geriatric locomotive function scale [GLFS-25]) scores were collected from seven administrative areas of Japan. RESULTS: The reference values of the three test scores were generated and all three test scores gradually decreased among young-to-middle-aged individuals and rapidly decreased in individuals aged over 60 years. The stand-up test score began decreasing significantly from the age of 30 years. The trajectories of decrease in the two-step test score with age was slightly different between men and women especially among the middle-aged individuals. The two physical test scores were more sensitive to aging than the self-reported test score. CONCLUSION: The reference values generated in this study could be employed to determine whether an individual has mobility comparable to independent community dwellers of the same age and sex.


Asunto(s)
Locomoción , Limitación de la Movilidad , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Valores de Referencia
11.
Exp Physiol ; 104(10): 1447-1454, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31294871

RESUMEN

NEW FINDINGS: What is the central question of this study? Although the factors secreted from Schwann cells that promote axonal growth in the peripheral nervous system have been well studied, the effect of cell-contact factors on Schwann cells remains to be determined. What is the main finding and its importance? This study demonstrates that Schwann cells stimulate neurite outgrowth by direct contact with neurites and by secreting factors. Notably, the effect of cell-contact factors in neurite outgrowth is comparable to that of secreted factors, indicating that the identification of cell surface molecules on Schwann cells that promote neurite outgrowth could lead to development of a new therapy for peripheral nervous system injury. ABSTRACT: Schwann cells (SCs) play a variety of roles in the regeneration process after injury to the peripheral nervous system. The factors secreted from SCs that promote axonal growth have been well studied. However, the involvement of cell-contact factors on SCs remains to be determined. Here, we demonstrate a significant contribution of a cell-contact mechanism in the effect of SCs on promotion of neuronal outgrowth. Neurite outgrowth of adult sensory neurons from dorsal root ganglia was quantified during co-culture with adult SCs. Direct contact of SCs with neurons was eliminated by culturing SCs on an insert placed in the same well; this resulted in a 51% reduction in the length of neurite outgrowth. In addition, when dorsal root ganglion neurons were cultured on sparsely seeded SCs, neurons that made contact with SCs on their neurites had 118% longer neurites than neurons that lacked contacts with SCs. Collectively, these findings provide evidence that SCs stimulate neurite outgrowth via direct contact with neurites in addition to secreting factors. The identification of cell surface molecules on SCs that promote neurite outgrowth could lead to development of a new therapy for peripheral nervous system injury.


Asunto(s)
Ganglios Espinales/crecimiento & desarrollo , Neuritas/fisiología , Proyección Neuronal/fisiología , Células de Schwann/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Comunicación Celular/fisiología , Tamaño de la Célula , Técnicas de Cocultivo , Femenino , Ganglios Espinales/citología , Regeneración Nerviosa , Neuritas/ultraestructura , Ratas , Ratas Endogámicas Lew
12.
BMC Neurosci ; 19(1): 8, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523078

RESUMEN

BACKGROUND: Quantification of axon regeneration in spinal cord tissue sections is a fundamental step to adequately determine if an applied treatment leads to an anatomical benefit following spinal cord injury. Recent advances have led to the development of therapies that can promote regeneration of thousands of injured axons in vivo. Axon labeling methods and in the application of regeneration-enabling stem cell grafts have increased the number of detectable regenerating axons by orders of magnitudes. Manual axon tracing in such cases is challenging and laborious, and as such there is a great need for automated algorithms that can perform accurate tracing and quantification in axon-dense tissue sections. RESULTS: We developed "AxonTracer", a fully automated software algorithm that traces and quantifies regenerating axons in spinal cord tissue sections. AxonTracer is an open source plugin for the freely available image-processing program ImageJ. The plugin identifies transplanted cells grafts or other regions of interest (ROIs) based on immunohistological staining and quantifies regenerating axons within the ROIs. Individual images or groups of images (batch mode) can be analyzed sequentially. In batch mode, a unique algorithm identifies a reference image for normalization, as well as a suitable image for defining detection parameters. An interactive user interface allows for adjustment of parameters defining ROI size, axon detection sensitivity and debris cleanup. Automated quantification of regenerating axons by AxonTracer correlates strongly with semi-manual quantification by the widely-used ImageJ plugin NeuronJ. However, quantification with AxonTracer is automated and reduces the need for user input compared to alternative methods. CONCLUSIONS: AxonTracer is a freely available open-source tool for automated analysis of regenerating axons in the injured nervous system. An interactive user interface provides detection-parameter adjustment, and usage does not require prior image analysis experience. Raw data as well as normalized results are stored in spreadsheet format and axon tracings are superimposed on raw images allowing for subjective visual verification. This software allows for automated, unbiased analysis of hundreds of axon-dense images, thus providing a useful tool in enabling in vivo screens of axon regeneration following spinal cord injury.


Asunto(s)
Axones/metabolismo , Procesamiento de Imagen Asistido por Computador , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Algoritmos , Animales , Axones/patología , Ratones , Ratas , Traumatismos de la Médula Espinal/fisiopatología
13.
Sci Rep ; 13(1): 638, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635323

RESUMEN

Patients with ossification of the ligamentum flavum (OLF) in the lumbar spine may be at high risk of developing concomitant ossification of the entire spinal ligament, but the etiology remains unclear. We investigated the propensity for spinal ligament ossification in asymptomatic subjects with lumbar OLF using the data of 595 Japanese individuals receiving medical check-ups, including computed tomography (CT) scanning. The severity of OLF (total number of intervertebral segments with OLF) of the entire spine on CT was quantified using an OLF index. Subjects with OLF were grouped according to this index: localized OLF (n = 138), intermediate OLF (n = 70), and extensive OLF (n = 31). The proportion of subjects with lumbar OLF increased with increasing OLF index (localized 13.7%, intermediate 41.4%, and extensive 70.9%). Multiple regression analysis found that lumbar OLF index was associated with thoracic OLF index, and co-existence of ossification of the posterior longitudinal ligament (OPLL) of the thoracic and lumbar spine. This study showed that subjects with more multilevel lumbar OLF were more likely to develop multilevel thoracic OLF and to have coexisting OPLL. Patients with lumbar OLF may be a distinctive subgroup with a strong tendency to ossification of the entire spinal ligament.


Asunto(s)
Ligamento Amarillo , Osificación del Ligamento Longitudinal Posterior , Osificación Heterotópica , Humanos , Osteogénesis , Ligamento Amarillo/diagnóstico por imagen , Columna Vertebral , Ligamentos , Osificación del Ligamento Longitudinal Posterior/diagnóstico por imagen , Osificación del Ligamento Longitudinal Posterior/complicaciones , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/complicaciones
14.
Spine J ; 23(10): 1461-1470, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437695

RESUMEN

BACKGROUND CONTEXT: Recent studies suggest that ossification of the posterior longitudinal ligament (OPLL) is exacerbated by systemic metabolic disturbances, including obesity. However, although an increase in bone mineral density (BMD) measured at the lumbar spine has been reported in patients with OPLL, no studies have investigated the systemic BMD of patients with OPLL in detail. PURPOSE: We investigated whether patients with OPLL develop increased whole-body BMD. STUDY DESIGN: Single institution cross-sectional study. PATIENT SAMPLE: Data were collected from Japanese patients with symptomatic OPLL (OPLL [+]; n=99). Control data (OPLL [-]; n=226) without spinal ligament ossification were collected from patients who underwent spinal decompression, spinal fusion, or hip replacement surgery. OUTCOME MEASURES: Demographic data, including age, body mass index (BMI), comorbidities, history of treatment for osteoporosis, and history of vertebral and nonvertebral fractures, was obtained from all participants. In addition, whole-body BMD, including the lumbar spine, thoracic spine, femoral neck, skull, ribs, entire upper extremity, entire lower extremity, and pelvis, were measured in all participants using whole-body dual-energy X-ray absorptiometry. METHODS: Patient data were collected from 2018 to 2022. All participants were categorized based on sex, age (middle-aged [<70 years] and older adults [≥70 years]), and OPLL type (localized OPLL [OPLL only in the cervical spine], diffuse OPLL [OPLL in regions including the thoracic spine]), and OPLL [-]) and each parameter was compared. The factors associated with whole-body BMD were evaluated via multivariable linear regression analysis. RESULTS: Compared with the OPLL (-) group, the OPLL (+) group of older women had significantly higher BMD in all body parts (p<.01), and the OPLL (+) group of older men had significantly higher BMD in all body parts except the ribs, forearm, and skull (p<.01). The factors associated with increased BMD of both the femoral neck (load-bearing bone) and skull (nonload-bearing bone) were age, BMI, and coexisting diffuse OPLL in women and BMI and coexisting localized OPLL in men. CONCLUSIONS: Patients with OPLL have increased whole-body BMD regardless of sex, indicating that it is not simply due to load-bearing from obesity. These findings suggested that OPLL is associated with a systemic pathology.


Asunto(s)
Densidad Ósea , Osificación del Ligamento Longitudinal Posterior , Masculino , Persona de Mediana Edad , Humanos , Femenino , Anciano , Ligamentos Longitudinales , Cuerpo Humano , Estudios Transversales , Osteogénesis , Osificación del Ligamento Longitudinal Posterior/complicaciones , Osificación del Ligamento Longitudinal Posterior/diagnóstico por imagen , Osificación del Ligamento Longitudinal Posterior/cirugía , Vértebras Cervicales/cirugía , Obesidad/complicaciones
15.
Arthritis Rheumatol ; 75(8): 1358-1369, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36924130

RESUMEN

OBJECTIVE: The severity of osteoarthritis (OA) and cartilage degeneration is highly correlated with the development of synovitis, which is mediated by the activity of inflammatory macrophages. A better understanding of intercellular communication between inflammatory macrophages and chondrocytes should aid in the discovery of novel therapeutic targets. We undertook this study to explore the pathologic role of inflammatory macrophage extracellular vesicles (EVs) in cartilage degeneration. METHODS: Macrophages were stimulated by treatment with bacterial lipopolysaccharides to mimic the state of inflammatory macrophages, and the resulting EVs were harvested for chondrocyte stimulation in vitro and for intraarticular injection in a mouse model. The stimulated chondrocytes were further subjected to RNA-sequencing analysis and other functional assays. The action of caspase 11 was disrupted in vitro using a specific small interfering RNA or wedelolactone, and in experimental murine OA models by intraarticular injection of wedelolactone. RESULTS: Stimulated chondrocytes exhibited a significant elevation in the expression of chondrocyte catabolic factors. Consistent with these results, RNA-sequencing analyses of stimulated chondrocytes indicated that up-regulated genes were mainly categorized into apoptotic process and tumor necrosis factor signaling pathways, which suggests the induction of apoptotic process. Moreover, these chondrocytes exhibited a significant elevation in the expression of pyroptosis-related molecules that were correlated with the expression of chondrocyte catabolic factors. The disruption of caspase 11 significantly alleviated pyroptotic and catabolic processes in stimulated chondrocytes and pathologic changes in collagenase-induced and joint instability-induced OA models. CONCLUSION: Our results provide new insight into the pathologic mechanisms of OA and suggest that noncanonical pyroptosis in chondrocytes represents an attractive therapeutic target for treatment.


Asunto(s)
Cartílago Articular , Vesículas Extracelulares , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Piroptosis , Cartílago/metabolismo , Osteoartritis/metabolismo , Macrófagos/metabolismo , ARN Interferente Pequeño/metabolismo , Caspasas , Vesículas Extracelulares/patología , Cartílago Articular/metabolismo
16.
Spine J ; 23(9): 1287-1295, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160167

RESUMEN

BACKGROUND CONTEXT: Obesity and visceral fat have been implicated as potential factors in the pathogenesis of the ossification of the posterior longitudinal ligament (OPLL); the details of the factors involved in OPLL remain unclear. PURPOSE: We aimed to determine the association between dyslipidemia and symptomatic OPLL. STUDY DESIGN: Single institution cross-sectional study. PATIENT SAMPLE: Data were collected from Japanese patients with OPLL (n=92) who underwent whole-spine computed tomography scanning. Control data (n=246) without any spinal ligament ossification were collected from 627 Japanese participants who underwent physical examination. OUTCOME MEASURES: Baseline information and lipid parameters, including triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) from fasting blood samples were collected to assess the comorbidity of dyslipidemia. METHODS: Patient data were collected from 2020 to 2022. Patients with dyslipidemia were defined as those who were taking medication for dyslipidemia and who met one of the following criteria: TG ≥150 mg/dL, LDL-C ≥140 mg/dL, and/or HDL-C <40 mg/dL. The factors associated with OPLL development were evaluated using multivariate logistic regression analysis. RESULTS: The comorbidity of dyslipidemia in the OPLL group was more than twice that in the control group (71.7% and 35.4%, respectively). The mean body mass index (BMI) of the OPLL group was significantly higher than that of the control group (27.2 kg/m2 and 23.0 kg/m2). Multivariate logistic regression analysis revealed that dyslipidemia was associated with the development of OPLL (regression coefficient, 0.80; 95% confidence interval, 0.11-1.50). Additional risk factors included age, BMI, and diabetes mellitus. CONCLUSIONS: We demonstrated a novel association between dyslipidemia and symptomatic OPLL development using serum data. This suggests that visceral fat obesity or abnormal lipid metabolism are associated with the mechanisms of onset and exacerbation of OPLL as well as focal mechanical irritation due to being overweight.


Asunto(s)
Dislipidemias , Osificación del Ligamento Longitudinal Posterior , Humanos , Ligamentos Longitudinales/patología , Osteogénesis , Estudios Transversales , LDL-Colesterol , Osificación del Ligamento Longitudinal Posterior/diagnóstico por imagen , Osificación del Ligamento Longitudinal Posterior/epidemiología , Dislipidemias/epidemiología , Dislipidemias/complicaciones , Obesidad/complicaciones , Obesidad/epidemiología , Vértebras Cervicales/patología
17.
BMC Sports Sci Med Rehabil ; 14(1): 71, 2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35430808

RESUMEN

BACKGROUND: Use of a wearable gait analysis system (WGAS) is becoming common when conducting gait analysis studies due to its versatility. At the same time, its versatility raises a concern about its accuracy, because its calculations rely on assumptions embedded in its algorithms. The purpose of the present study was to validate twenty spatiotemporal gait parameters calculated by the WGAS by comparison with simultaneous measurements taken with an optical motion capture system (OMCS). METHODS: Ten young healthy volunteers wore two inertial sensors of the commercially available WGAS, Physilog®, on their feet and 23 markers for the OMCS on the lower part of the body. The participants performed at least three sets of 10-m walk tests at their self-paced speed in the laboratory equipped with 12 high-speed digital cameras with embedded force plates. To measure repeatability, all participants returned for a second day of testing within two weeks. RESULTS: Twenty gait parameters calculated by the WGAS had a significant correlation with the ones determined by the OMCS. Bland and Altman analysis showed that the between-device agreement for twenty gait parameters was within clinically acceptable limits. The validity of the gait parameters generated by the WGAS was found to be excellent except for two parameters, swing width and maximal heel clearance. The repeatability of the WGAS was excellent when measured between sessions. CONCLUSION: The present study showed that spatiotemporal gait parameters estimated by the WGAS were reasonably accurate and repeatable in healthy young adults, providing a scientific basis for applying this system to clinical studies.

18.
NPJ Regen Med ; 7(1): 12, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091563

RESUMEN

Since Schwann cells (SCs) support axonal growth at development as well as after peripheral nerve injury (PNI), developing SCs might be able to promote axon regeneration after PNI. The purpose of the current study was to elucidate the capability of developing SCs to induce axon regeneration after PNI. SC precursors (SCPs), immature SCs (ISCs), repair SCs (RSCs) from injured nerves, and non-RSCs from intact nerves were tested by grafting into acellular region of rat sciatic nerve with crush injury. Both of developing SCs completely failed to support axon regeneration, whereas both of mature SCs, especially RSCs, induced axon regeneration. Further, RSCs but not SCPs promoted neurite outgrowth of adult dorsal root ganglion neurons. Transcriptome analysis revealed that the gene expression profiles were distinctly different between RSCs and SCPs. These findings indicate that developing SCs are markedly different from mature SCs in terms of functional and molecular aspects and that RSC is a viable candidate for regenerative cell therapy for PNI.

19.
Biomedicines ; 10(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35625846

RESUMEN

Osteoarthritis (OA) is a musculoskeletal disease characterized by cartilage degeneration and stiffness, with chronic pain in the affected joint. It has been proposed that OA progression is associated with the development of low-grade inflammation (LGI) in the joint. In support of this principle, LGI is now recognized as the major contributor to the pathogenesis of obesity, aging, and metabolic syndromes, which have been documented as among the most significant risk factors for developing OA. These discoveries have led to a new definition of the disease, and OA has recently been recognized as a low-grade inflammatory disease of the joint. Damage-associated molecular patterns (DAMPs)/alarmin molecules, the major cellular components that facilitate the interplay between cells in the cartilage and synovium, activate various molecular pathways involved in the initiation and maintenance of LGI in the joint, which, in turn, drives OA progression. A better understanding of the pathological mechanisms initiated by LGI in the joint represents a decisive step toward discovering therapeutic strategies for the treatment of OA. Recent findings and discoveries regarding the involvement of LGI mediated by DAMPs in OA pathogenesis are discussed. Modulating communication between cells in the joint to decrease inflammation represents an attractive approach for the treatment of OA.

20.
Biomater Sci ; 10(9): 2182-2187, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35348130

RESUMEN

Double network hydrogels (DN gels) composed of poly (2-acrylamido-2-methyl propanesulfonic acid) (PAMPS) as the brittle first network and poly (N,N-dimethylacrylamide) (PDMA) as the ductile second network have been proven to be a substitute biomaterial for cartilage, with promising biocompatibility and low toxicity, when they are used as bulk materials. For their further applications as articular cartilages, it is essential to understand the biological reactions and adverse events that might be initiated by wear particles derived from these materials. In this study, we used DN gel micro-particles of sizes 4 µm and 10 µm generated by the grinding method to mimic wearing debris of DN gels. The biological responses to particles were then evaluated in a macrophage-cultured system and an inflammatory osteolysis murine model. Our results demonstrated that DN gel particles have the ability to activate macrophages and promote the expression of Tnf-α, both in vitro and in vivo. Furthermore, the implantation of these particles onto calvarial bone triggered local inflammation and bone loss in a mouse model. Our data reveal that the potential foreign body responses to the generated particles from artificial cartilage should receive more attention in artificial cartilage engineering with the goal of developing a safer biocompatible substitute.


Asunto(s)
Cartílago Articular , Hidrogeles , Animales , Materiales Biocompatibles/farmacología , Hidrogeles/farmacología , Ratones , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA