Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Haemophilia ; 30(1): 224-231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37824540

RESUMEN

INTRODUCTION: Patients with hemophilia A treated with coagulation Factor VIII (FVIII) products are at risk for developing anti-FVIII antibodies. The ABIRISK Consortium aimed to provide knowledge on the formation and detection of anti-drug antibodies against biopharmaceutical products, including FVIII. Accordingly, standardized and validated assays for the detection of binding (total) and neutralizing antibodies are needed. AIM: Two-center validation of an ELISA for the detection of total FVIII-binding IgG-antibodies and Nijmegen-Bethesda assays for the quantification of FVIII-neutralizing antibodies according to consensus validation guidelines. METHODS: Validation of assays at both sites was done according to published recommendations and included preanalytics, the determination of key assay parameters, including cut-points, assay sensitivity, precision, and FVIII interference. RESULTS: The validated assays reproducibly detected FVIII-binding and -neutralizing antibodies with comparable performance in both laboratories. Floating screening cut-points were established for both assays. Determined mass-based sensitivity of both assays (all values ≤66 ng/mL) complied with the minimum sensitivity for the detection of anti-drug antibodies as recommended by the FDA (<100 ng/mL). Intra- and inter-assay coefficients of variation did not exceed 25%. Assay validation further revealed that pre-analytical heat treatment led to potentially false-positive ELISA results, while up to 0.15 IU/mL, residual FVIII showed no significant impact. Overall, good agreement of results was found for patient samples analyzed at both study sites. CONCLUSION: Comprehensive validation of different anti-FVIII-antibody assays in two laboratories gave novel insights into the impact of pre-analytical sample treatment as well as the comparability of test results generated by the use of methodically different assays.


Asunto(s)
Anticuerpos Neutralizantes , Hemofilia A , Humanos , Factor VIII/uso terapéutico , Hemofilia A/tratamiento farmacológico , Pruebas de Coagulación Sanguínea , Inmunoglobulina G , Ensayo de Inmunoadsorción Enzimática
2.
Thromb Haemost ; 116(1): 32-41, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27009573

RESUMEN

Following replacement therapy with coagulation factor VIII (FVIII), up to 30 % of haemophilia A patients develop FVIII-specific inhibitory antibodies (FVIII inhibitors). Immune tolerance induction (ITI) is not always successful, resulting in a need for alternative treatments for FVIII inhibitor-positive patients. As tolerance induction in the course of ITI appears to involve the formation of anti-idiotypes specific for anti-FVIII antibodies, such anti-idiotypes might be used to restore haemostasis in haemophilia A patients with FVIII inhibitors. We isolated anti-idiotypic antibody fragments (scFvs) binding to murine FVIII inhibitors 2-76 and 2-77 from phage-displayed libraries. FVIII inhibitor/anti-idiotype interactions were very specific as no cross-reactivity with other FVIII inhibitors or isotype controls was observed. ScFvs blocked binding of FVIII inhibitors to FVIII and neutralised their cognate inhibitors in vitro and a monoclonal mouse model. In addition, scFv JkH5 specific for FVIII inhibitor 2-76 stained 2-76-producing hybridoma cells. JkH5 residues R52 and Y226, located in complementary determining regions, were identified as crucial for the JkH5/2-76 interaction using JkH5 alanine mutants. SPR spectroscopy revealed that JkH5 interacts with FVIII inhibitor 2-76 with nanomolar affinity. Thus, FVIII inhibitor-specific, high-affinity anti-idiotypes can be isolated from phage-displayed libraries and neutralise their respective inhibitors. Furthermore, we show that anti-idiotypic scFvs might be utilised to specifically target inhibitor-specific B cells. Hence, a pool of anti-idiotypes could enable the reestablishment of haemostasis in the presence of FVIII inhibitors in patients or even allow the depletion of inhibitors by targeting inhibitor-specific B cell populations.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Anticuerpos Antiidiotipos/uso terapéutico , Factor VIII/antagonistas & inhibidores , Factor VIII/inmunología , Hemofilia A/inmunología , Hemofilia A/terapia , Animales , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Especificidad de Anticuerpos , Reacciones Cruzadas , Modelos Animales de Enfermedad , Mapeo Epitopo , Factor VIII/genética , Hemofilia A/genética , Humanos , Hibridomas/inmunología , Tolerancia Inmunológica , Técnicas In Vitro , Cinética , Masculino , Ratones , Ratones Noqueados , Biblioteca de Péptidos , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/uso terapéutico
3.
FEBS J ; 276(5): 1356-69, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19187242

RESUMEN

The retinoid-inducible serine carboxypeptidase 1 (Scpep1; formerly RISC) is a lysosomal matrix protein that was initially identified in a screen for genes induced by retinoic acid. Recently, it has been spotlighted by several proteome analyses of the lysosomal compartment, but its cellular function and properties remain unknown to date. In this study, Scpep1 from mice was analysed with regard to its intracellular processing into a mature dimer consisting of a 35 kDa N-terminal fragment and a so far unknown 18 kDa C-terminal fragment and the glycosylation status of the mature Scpep1 fragment. Although Scpep1 shares notable homology and a number of structural hallmarks with the well-described lysosomal carboxypeptidase protective protein/cathepsin A, the purified recombinant 55 kDa precursor and the homogenates of Scpep1-overexpressing cells do not show proteolytic activity or increased serine carboxypeptidase activity towards artificial serine carboxypeptidase substrates. Hence, we disrupted the Scpep1 gene in mice by a gene trap cassette, resulting in a Scpep1/beta-galactosidase/neomycin phosphotransferase fusion protein. The fusion protein is devoid of the C-terminal half of Scpep1, including two amino acids of the assumed catalytic triad which is indispensable for its predicted serine carboxypeptidase activity. However, Scpep1-deficient mice were viable and fertile, and did not exhibit either lysosomal storage or reduced lysosomal SC activity under any tested condition.


Asunto(s)
Carboxipeptidasas/genética , Lisosomas/enzimología , Secuencia de Aminoácidos , Animales , Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Células Cultivadas , Glicosilación , Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA