Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 18(4): e0280892, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37058495

RESUMEN

Despite the rising global burden of stroke and its socio-economic implications, the neuroimaging predictors of subsequent cognitive impairment are still poorly understood. We address this issue by studying the relationship of white matter integrity assessed within ten days after stroke and patients' cognitive status one year after the attack. Using diffusion-weighted imaging, we apply the Tract-Based Spatial Statistics analysis and construct individual structural connectivity matrices by employing deterministic tractography. We further quantify the graph-theoretical properties of individual networks. The Tract-Based Spatial Statistic did identify lower fractional anisotropy as a predictor of cognitive status, although this effect was mostly attributable to the age-related white matter integrity decline. We further observed the effect of age propagating into other levels of analysis. Specifically, in the structural connectivity approach we identified pairs of regions significantly correlated with clinical scales, namely memory, attention, and visuospatial functions. However, none of them persisted after the age correction. Finally, the graph-theoretical measures appeared to be more robust towards the effect of age, but still were not sensitive enough to capture a relationship with clinical scales. In conclusion, the effect of age is a dominant confounder especially in older cohorts, and unless appropriately addressed, may falsely drive the results of the predictive modelling.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Anciano , Imagen de Difusión Tensora/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Imagen de Difusión por Resonancia Magnética , Envejecimiento , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
2.
Front Cell Neurosci ; 16: 855161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370554

RESUMEN

Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG µCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA