Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 157(4): 769-70, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813602

RESUMEN

Although stem cells are subject to niche control, evidence is emerging that they also contribute to generating the niche through their offspring. Using the hair follicle as a model, Hsu at al. demonstrate that the transient-amplifying cells, downstream of stem cells and well-known cell producers, signal back to stem cells to maintain long-term regenerative capacity.


Asunto(s)
Folículo Piloso/citología , Cabello/citología , Cabello/fisiología , Nicho de Células Madre , Células Madre/citología , Animales
2.
Cell ; 146(5): 697-708, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884932

RESUMEN

AKT activation is associated with many malignancies, where AKT acts, in part, by inhibiting FOXO tumor suppressors. We show a converse role for AKT/FOXOs in acute myeloid leukemia (AML). Rather than decreased FOXO activity, we observed that FOXOs are active in ∼40% of AML patient samples regardless of genetic subtype. We also observe this activity in human MLL-AF9 leukemia allele-induced AML in mice, where either activation of Akt or compound deletion of FoxO1/3/4 reduced leukemic cell growth, with the latter markedly diminishing leukemia-initiating cell (LIC) function in vivo and improving animal survival. FOXO inhibition resulted in myeloid maturation and subsequent AML cell death. FOXO activation inversely correlated with JNK/c-JUN signaling, and leukemic cells resistant to FOXO inhibition responded to JNK inhibition. These data reveal a molecular role for AKT/FOXO and JNK/c-JUN in maintaining a differentiation blockade that can be targeted to inhibit leukemias with a range of genetic lesions.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Antígenos CD34/metabolismo , Apoptosis , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Proteína Forkhead Box O3 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo
3.
Blood ; 121(18): 3692-702, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23487027

RESUMEN

Interferon-α (IFNα) is an effective treatment of patients with myeloproliferative neoplasms (MPNs). In addition to inducing hematological responses in most MPN patients, IFNα reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNα on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFNα on Jak2V617F MPN-propagating stem cells in vivo. We report that IFNα treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFNα treatment induces cell cycle activation of Jak2V617F mutant long-term hematopoietic stem cells and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFNα on Jak2V617F mutant and normal hematopoiesis and suggest that IFNα achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFNα and targeting the proliferating downstream progeny with JAK2 inhibitors or cytotoxic chemotherapy.


Asunto(s)
Neoplasias Hematológicas/patología , Interferón-alfa/farmacología , Janus Quinasa 2/genética , Células Madre Neoplásicas/efectos de los fármacos , Policitemia Vera/patología , Sustitución de Aminoácidos/genética , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Neoplasias Hematológicas/genética , Humanos , Janus Quinasa 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/fisiología , Fenilalanina/genética , Policitemia Vera/tratamiento farmacológico , Policitemia Vera/genética , Valina/genética
6.
Blood ; 113(18): 4414-24, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19179468

RESUMEN

PTPN11, which encodes the tyrosine phosphatase SHP2, is mutated in approximately 35% of patients with juvenile myelomonocytic leukemia (JMML) and at a lower incidence in other neoplasms. To model JMML pathogenesis, we generated knockin mice that conditionally express the leukemia-associated mutant Ptpn11(D61Y). Expression of Ptpn11(D61Y) in all hematopoietic cells evokes a fatal myeloproliferative disorder (MPD), featuring leukocytosis, anemia, hepatosplenomegaly, and factor-independent colony formation by bone marrow (BM) and spleen cells. The Lin(-)Sca1(+)cKit(+) (LSK) compartment is expanded and "right-shifted," accompanied by increased stem cell factor (SCF)-evoked colony formation and Erk and Akt activation. However, repopulating activity is decreased in diseased mice, and mice that do engraft with Ptpn11(D61Y) stem cells fail to develop MPD. Ptpn11(D61Y) common myeloid progenitors (CMPs) and granulocyte-monocyte progenitors (GMPs) produce cytokine-independent colonies in a cell-autonomous manner and demonstrate elevated Erk and Stat5 activation in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. Ptpn11(D61Y) megakaryocyte-erythrocyte progenitors (MEPs) yield increased numbers of erythrocyte burst-forming units (BFU-Es), but MEPs and erythrocyte-committed progenitors (EPs) produce fewer erythrocyte colony-forming units (CFU-Es), indicating defective erythroid differentiation. Our studies provide a mouse model for Ptpn11-evoked MPD and show that this disease results from cell-autonomous and distinct lineage-specific effects of mutant Ptpn11 on multiple stages of hematopoiesis.


Asunto(s)
Técnicas de Sustitución del Gen , Genes Letales/fisiología , Hematopoyesis/fisiología , Trastornos Mieloproliferativos/etiología , Trastornos Mieloproliferativos/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Traslado Adoptivo , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Eritrocitos/metabolismo , Eritrocitos/patología , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patología , Femenino , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Células Progenitoras de Granulocitos y Macrófagos/patología , Granulocitos/metabolismo , Granulocitos/patología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Monocitos/metabolismo , Monocitos/patología , Trastornos Mieloproliferativos/metabolismo , Fenotipo , Factor de Transcripción STAT5/metabolismo , Bazo/metabolismo , Bazo/patología
7.
Biochem Biophys Res Commun ; 367(1): 103-8, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18164680

RESUMEN

NEMO is an essential regulatory component of the IkappaB kinase (IKK) complex, which controls activation of the NF-kappaB signaling pathway. Herein, we show that NEMO exists as a disulfide-bonded dimer when isolated from several cell types and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. Treatment of cells with hydrogen peroxide (H(2)O(2)) induces further formation of NEMO dimers. Disulfide bond-mediated formation of NEMO dimers requires Cys54 and Cys347. The ability of these residues to form disulfide bonds is consistent with their location in a NEMO dimer structure that we generated by molecular modeling. We also show that pretreatment with H(2)O(2) decreases TNFalpha-induced IKK activity in NEMO-reconstituted cells, and that TNFalpha has a diminished ability to activate NF-kappaB DNA binding in cells reconstituted with NEMO mutant C54/347A. This study implicates NEMO as a target of redox regulation and presents the first structural model for the NEMO protein.


Asunto(s)
Núcleo Celular/metabolismo , Cisteína/química , Disulfuros/química , Péptidos y Proteínas de Señalización Intracelular , Animales , Secuencia de Bases , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , ADN/metabolismo , Dimerización , Disulfuros/metabolismo , Electroforesis en Gel de Poliacrilamida , Peróxido de Hidrógeno/farmacología , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Moleculares , Mutación , Oxidación-Reducción , Unión Proteica , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Clin Invest ; 127(4): 1405-1413, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28319048

RESUMEN

The mTOR pathway is a critical determinant of cell persistence and growth wherein mTOR complex 1 (mTORC1) mediates a balance between growth factor stimuli and nutrient availability. Amino acids or glucose facilitates mTORC1 activation by inducing RagA GTPase recruitment of mTORC1 to the lysosomal outer surface, enabling activation of mTOR by the Ras homolog Rheb. Thereby, RagA alters mTORC1-driven growth in times of nutrient abundance or scarcity. Here, we have evaluated differential nutrient-sensing dependence through RagA and mTORC1 in hematopoietic progenitors, which dynamically drive mature cell production, and hematopoietic stem cells (HSC), which provide a quiescent cellular reserve. In nutrient-abundant conditions, RagA-deficient HSC were functionally unimpaired and upregulated mTORC1 via nutrient-insensitive mechanisms. RagA was also dispensable for HSC function under nutritional stress conditions. Similarly, hyperactivation of RagA did not affect HSC function. In contrast, RagA deficiency markedly altered progenitor population function and mature cell output. Therefore, RagA is a molecular mechanism that distinguishes the functional attributes of reactive progenitors from a reserve stem cell pool. The indifference of HSC to nutrient sensing through RagA contributes to their molecular resilience to nutritional stress, a characteristic that is relevant to organismal viability in evolution and in modern HSC transplantation approaches.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adaptación Fisiológica , Aminoácidos/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/metabolismo , Estrés Fisiológico
9.
Sci Immunol ; 2(11)2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28763796

RESUMEN

Monocytes are derived from hematopoietic stem cells through a series of intermediate progenitor stages, but the factors that regulate this process are incompletely defined. Using a Ccr2/Cx3cr1 dual-reporter system to model murine monocyte ontogeny, we conducted a small-molecule screen that identified an essential role of mechanistic target of rapamycin complex 1 (mTORC1) in the development of monocytes and other myeloid cells. Confirmatory studies using mice with inducible deletion of the mTORC1 component Raptor demonstrated absence of mature circulating monocytes, as well as disruption in neutrophil and dendritic cell development, reflecting arrest of terminal differentiation at the granulocyte-monocyte progenitor stage. Conversely, excess activation of mTORC1 through deletion of the mTORC1 inhibitor tuberous sclerosis complex 2 promoted spontaneous myeloid cell development and maturation. Inhibitor studies and stage-specific expression profiling identified failure to down-regulate the transcription factor Myc by the mTORC1 target ribosomal S6 kinase 1 (S6K1) as the mechanistic basis for disrupted myelopoiesis. Together, these findings define the mTORC1-S6K1-Myc pathway as a key checkpoint in terminal myeloid development.

10.
Trends Endocrinol Metab ; 16(2): 46-52, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15734144

RESUMEN

The NF-kappaB family of transcription factors regulates many genes that are essential primarily for the development, maintenance and function of the innate and adaptive immune systems. Thus, aberrant activity of the nuclear factor NF-kappaB has a role in many pathological conditions with inflammatory and autoimmune components. Estrogen receptors (ERs) are transcription factors that mediate the biological responses to the sex hormone estrogen and are essential for reproduction and for functions of the cardiovascular, skeletal and nervous systems. Recent studies have demonstrated molecular cross-talk between these families of transcription factors in which the ER mediates inhibition of NF-kappaB activity at several levels. Such cross-talk between these important regulators of the endocrine and immune systems might be exploited for the treatment of cancer and inflammatory and autoimmune diseases.


Asunto(s)
FN-kappa B/antagonistas & inhibidores , FN-kappa B/fisiología , Receptores de Estrógenos/fisiología , Factores de Transcripción/fisiología , Animales , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Receptores de Estrógenos/metabolismo
11.
J Clin Invest ; 126(4): 1300-10, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26927669

RESUMEN

Regulation of STAT3 activation is critical for normal and malignant hematopoietic cell proliferation. Here, we have reported that the endogenous transmembrane protein upstream-of-mTORC2 (UT2) negatively regulates activation of STAT3. Specifically, we determined that UT2 interacts directly with GP130 and inhibits phosphorylation of STAT3 on tyrosine 705 (STAT3Y705). This reduces cytokine signaling including IL6 that is implicated in multiple myeloma and other hematopoietic malignancies. Modulation of UT2 resulted in inverse effects on animal survival in myeloma models. Samples from multiple myeloma patients also revealed a decreased copy number of UT2 and decreased expression of UT2 in genomic and transcriptomic analyses, respectively. Together, these studies identify a transmembrane protein that functions to negatively regulate cytokine signaling through GP130 and pSTAT3Y705 and is molecularly and mechanistically distinct from the suppressors of cytokine signaling (SOCS) family of genes. Moreover, this work provides evidence that perturbations of this activation-dampening molecule participate in hematologic malignancies and may serve as a key determinant of multiple myeloma pathophysiology. UT2 is a negative regulator shared across STAT3 and mTORC2 signaling cascades, functioning as a tumor suppressor in hematologic malignancies driven by those pathways.


Asunto(s)
Neoplasias Hematológicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mieloma Múltiple/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Femenino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Factor de Transcripción STAT3/genética , Proteínas Supresoras de Tumor/genética , Transportadores de Urea
12.
Oncogene ; 23(13): 2275-86, 2004 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-14755244

RESUMEN

Activation of the Rel/NF-kappaB signal transduction pathway has been associated with a variety of animal and human malignancies. However, among the Rel/NF-kappaB family members, only c-Rel has been consistently shown to be able to malignantly transform cells in culture. In addition, c-rel has been activated by a retroviral promoter insertion in an avian B-cell lymphoma, and amplifications of REL (human c-rel) are frequently seen in Hodgkin's lymphomas and diffuse large B-cell lymphomas, and in some follicular and mediastinal B-cell lymphomas. Phenotypic analysis of c-rel knockout mice demonstrates that c-Rel has a normal role in B-cell proliferation and survival; moreover, c-Rel nuclear activity is required for B-cell development. Few mammalian model systems are available to study the role of c-Rel in oncogenesis, and it is still not clear what features of c-Rel endow it with its unique oncogenic activity among the Rel/NF-kappaB family. In any event, REL may provide an appropriate therapeutic target for certain human lymphoid cell malignancies.


Asunto(s)
Linfocitos B/fisiología , División Celular/fisiología , Proteínas Proto-Oncogénicas c-rel/fisiología , Animales , Humanos , Leucemia de Células B/genética , FN-kappa B/fisiología , Proteínas Proto-Oncogénicas c-rel/genética , Transducción de Señal/fisiología
13.
Oncogene ; 23(45): 7580-7, 2004 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-15326488

RESUMEN

Overexpression of the human REL transcription factor can malignantly transform chicken spleen cells in vitro. In this report, we have created and characterized a cDNA encoding a chimeric protein (RELDelta424-490-ER) in which sequences of a highly transforming REL mutant (RELDelta424-490) are fused to the ligand-binding domain of the human estrogen receptor (ER). Surprisingly, RELDelta424-490-ER is constitutively nuclear in A293 cells, and RELDelta424-490-ER activates transcription in the absence, but not in the presence, of estrogen in kappaB-site reporter gene assays. Furthermore, RELDelta424-490-ER transforms chicken spleen cells in the absence of estrogen, but the addition of estrogen blocks the ability of RELDelta424-490-ER-transformed cells to form colonies in soft agar, even though estrogen induces increased nuclear translocation of RELDelta424-490-ER in these cells. ERalpha can also inhibit REL-dependent transactivation in trans in an estrogen-dependent manner, and ERalpha can interact with REL in vitro. Thus, the RELDelta424-490-ER fusion protein shows an unusual, reverse hormone regulation, in that its most prominent biological activities (transformation and transactivation) are inhibited by estrogen, probably due to an estrogen-induced interaction between the ER sequences and sequences in the Rel homology domain. Nevertheless, these results indicate that the continual activity of REL is required to sustain the transformed state of chicken spleen cells in culture, suggesting that direct and specific inhibitors of REL may have therapeutic efficacy in certain human lymphoid cancers.


Asunto(s)
Proteínas Oncogénicas v-rel/fisiología , Receptores de Estrógenos/fisiología , Proteínas Recombinantes de Fusión/fisiología , Bazo/metabolismo , Animales , Transformación Celular Neoplásica , Pollos , Humanos , Proteínas Oncogénicas v-rel/genética , Receptores de Estrógenos/genética , Proteínas Recombinantes de Fusión/genética , Bazo/citología
14.
Oncogene ; 21(57): 8759-68, 2002 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-12483529

RESUMEN

The human large B-cell lymphoma cell line RC-K8 has a rearranged REL locus that directs the production of a chimeric protein, termed REL-NRG (Non-Rel Gene). In this study, we show that RC-K8 cells have constitutively nuclear heterodimeric and homodimeric DNA-binding complexes that consist of p50, REL, and REL-NRG. In vitro, IkappaBalpha can block the DNA-binding activity of wild-type REL homodimers but not REL-NRG homodimers. In vivo, REL-NRG cannot activate transcription of a kappaB site reporter plasmid, suggesting that it is a transcription repressing or blocking REL protein. By Western blotting, no IkappaBalpha protein can be detected in extracts of RC-K8 cells. The absence of IkappaBalpha protein in RC-K8 cells appears to be due to mutations that cause premature termination of translation in three of the four copies of the IKBA gene in RC-K8 cells. Re-expression of wild-type IkappaBalpha or a super-repressor form of IkappaBalpha in RC-K8 cells is cytotoxic; in contrast, expression of a dominant-negative form of IkappaB kinase does not affect the growth of RC-K8 cells. By cDNA microarray analysis, a number of previously identified Rel/NF-kappaB target genes are overexpressed in RC-K8 cells, consistent with there being transcriptionally active REL complexes. Taken together, our results suggest that the growth of RC-K8 cells is dependent on the activity of nuclear wild-type REL dimers, while the contribution of REL-NRG to the transformed state of RC-K8 cells is less clear. Nevertheless, the RC-K8 cell line is the first tumor cell line identified with mutations in genes encoding multiple proteins in the Rel/NF-kappaB signal transduction pathway.


Asunto(s)
Linfoma de Células B/genética , FN-kappa B/metabolismo , Transducción de Señal , Secuencia de Bases , ADN Complementario , Dimerización , Ensayo de Cambio de Movilidad Electroforética , Humanos , Linfoma de Células B/patología , Plásmidos , Transcripción Genética , Células Tumorales Cultivadas
15.
Cancer Lett ; 181(1): 1-9, 2002 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12430173

RESUMEN

The Rel/NF-kappa B family is a group of structurally-related, tightly-regulated transcription factors that control the expression of a multitude of genes involved in key cellular and organismal processes. The Rel/NF-kappa B signal transduction pathway is misregulated in a variety of human cancers, especially ones of lymphoid cell origin, due either to genetic changes (such as chromosomal rearrangements, amplifications, and mutations) or to chronic activation of the pathway by epigenetic mechanisms. Constitutive activation of the Rel/NF-kappa B pathway can contribute to the oncogenic state in several ways, for example, by driving proliferation, by enhancing cell survival, or by promoting angiogenesis or metastasis. In many cases, inhibition of Rel/NF-kappa B activity reverses all or part of the malignant state. Thus, the Rel/NF-kappa B pathway has received much attention as a focal point for clinical intervention.


Asunto(s)
Proteínas I-kappa B/metabolismo , FN-kappa B/metabolismo , Neoplasias/metabolismo , Proteínas Oncogénicas v-rel/metabolismo , Antineoplásicos/farmacología , Aberraciones Cromosómicas , Humanos , Proteínas I-kappa B/antagonistas & inhibidores , Proteínas I-kappa B/genética , FN-kappa B/genética , Proteínas Oncogénicas v-rel/antagonistas & inhibidores , Proteínas Oncogénicas v-rel/fisiología , Transducción de Señal
16.
Stem Cell Reports ; 3(5): 832-40, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25418727

RESUMEN

Central to cellular proliferative, survival, and metabolic responses is the serine/threonine kinase mTOR, which is activated in many human cancers. mTOR is present in distinct complexes that are either modulated by AKT (mTORC1) or are upstream and regulatory of it (mTORC2). Governance of mTORC2 activity is poorly understood. Here, we report a transmembrane molecule in hematopoietic progenitor cells that physically interacts with and inhibits RICTOR, an essential component of mTORC2. Upstream of mTORC2 (UT2) negatively regulates mTORC2 enzymatic activity, reducing AKT(S473), PKCα, and NDRG1 phosphorylation and increasing FOXO transcriptional activity in an mTORC2-dependent manner. Modulating UT2 levels altered animal survival in a T cell acute lymphoid leukemia (T-ALL) model that is known to be mTORC2 sensitive. These studies identify an inhibitory component upstream of mTORC2 in hematopoietic cells that can reduce mortality from NOTCH-induced T-ALL. A transmembrane inhibitor of mTORC2 may provide an attractive target to affect this critical cell regulatory pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Células Madre Hematopoyéticas/citología , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Complejos Multiproteicos/genética , Células 3T3 NIH , Fosforilación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Unión Proteica , Proteína Quinasa C-alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Proteína Asociada al mTOR Insensible a la Rapamicina , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasas TOR/genética
17.
Cell Stem Cell ; 10(4): 412-24, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22482506

RESUMEN

A key characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Genetic deletion of ß-catenin during fetal HSC development leads to impairment of self-renewal while ß-catenin is dispensable in fully developed adult HSCs. Whether ß-catenin is required for maintenance of fully developed CML leukemia stem cells (LSCs) is unknown. Here, we use a conditional mouse model to show that deletion of ß-catenin after CML initiation does not lead to a significant increase in survival. However, deletion of ß-catenin synergizes with imatinib (IM) to delay disease recurrence after imatinib discontinuation and to abrogate CML stem cells. These effects can be mimicked by pharmacologic inhibition of ß-catenin via modulation of prostaglandin signaling. Treatment with the cyclooxygenase inhibitor indomethacin reduces ß-catenin levels and leads to a reduction in LSCs. In conclusion, inhibiting ß-catenin by genetic inactivation or pharmacologic modulation is an effective combination therapy with imatinib and targets CML stem cells.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Indometacina/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva , Células Madre Neoplásicas/metabolismo , Piperazinas/farmacología , Pirimidinas/farmacología , beta Catenina , Animales , Benzamidas , Eliminación de Gen , Humanos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Ratones , Células Madre Neoplásicas/patología , Prostaglandinas/metabolismo , beta Catenina/antagonistas & inhibidores , beta Catenina/genética
18.
Cell Stem Cell ; 11(3): 429-39, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22958934

RESUMEN

The mechanistic target of rapamycin (mTOR) pathway serves as a key sensor of cellular-energetic state and functions to maintain tissue homeostasis. Hyperactivation of the mTOR pathway impairs hematopoietic stem cell (HSC) function and is associated with leukemogenesis. However, the roles of the unique mTOR complexes (mTORCs) in hematopoiesis and leukemogenesis have not been adequately elucidated. We deleted the mTORC1 component, regulatory-associated protein of mTOR (Raptor), in mouse HSCs and its loss causes a nonlethal phenotype characterized by pancytopenia, splenomegaly, and the accumulation of monocytoid cells. Furthermore, Raptor is required for HSC regeneration, and plays largely nonredundant roles with rapamycin-insensitive companion of mTOR (Rictor) in these processes. Ablation of Raptor also significantly extends survival of mice in models of leukemogenesis evoked by Pten deficiency. These data delineate critical roles for mTORC1 in hematopoietic function and leukemogenesis and inform clinical strategies based on chronic mTORC1 inhibition.


Asunto(s)
Transformación Celular Neoplásica/patología , Hematopoyesis , Leucemia/enzimología , Leucemia/patología , Complejos Multiproteicos/metabolismo , Fosfohidrolasa PTEN/deficiencia , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras , Ciclo Celular/genética , Diferenciación Celular , Linaje de la Célula , Modelos Animales de Enfermedad , Regulación Leucémica de la Expresión Génica , Hematopoyesis/genética , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Fosfohidrolasa PTEN/metabolismo , Proteína Reguladora Asociada a mTOR , Análisis de Supervivencia
19.
J Clin Invest ; 121(3): 1026-43, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21339643

RESUMEN

LEOPARD syndrome (LS) is an autosomal dominant "RASopathy" that manifests with congenital heart disease. Nearly all cases of LS are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11) gene that encodes the SH2 domain-containing PTP-2 (SHP2). RASopathies typically affect components of the RAS/MAPK pathway, yet it remains unclear how PTPN11 mutations alter cellular signaling to produce LS phenotypes. We therefore generated knockin mice harboring the Ptpn11 mutation Y279C, one of the most common LS alleles. Ptpn11(Y279C/+) (LS/+) mice recapitulated the human disorder, with short stature, craniofacial dysmorphia, and morphologic, histologic, echocardiographic, and molecular evidence of hypertrophic cardiomyopathy (HCM). Heart and/or cardiomyocyte lysates from LS/+ mice showed enhanced binding of Shp2 to Irs1, decreased Shp2 catalytic activity, and abrogated agonist-evoked Erk/Mapk signaling. LS/+ mice also exhibited increased basal and agonist-induced Akt and mTor activity. The cardiac defects in LS/+ mice were completely reversed by treatment with rapamycin, an inhibitor of mTOR. Our results demonstrate that LS mutations have dominant-negative effects in vivo, identify enhanced mTOR activity as critical for causing LS-associated HCM, and suggest that TOR inhibitors be considered for treatment of HCM in LS patients.


Asunto(s)
Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/genética , Inmunosupresores/farmacología , Síndrome LEOPARD/tratamiento farmacológico , Síndrome LEOPARD/genética , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Sirolimus/farmacología , Animales , Catálisis , Ecocardiografía , Femenino , Humanos , Masculino , Ratones , Fenotipo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
20.
Cancer Cell ; 14(4): 279-80, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18835028

RESUMEN

Knowledge of the distinctive cellular and genetic traits of a cancer aids in diagnosis, prognosis, and potentially treatment. In this issue of Cancer Cell, Kotecha et al. (2008) demonstrate using a sophisticated flow cytometry approach that signal transduction responses to exogenous stimulation can inform diagnosis and pathobiology of myeloproliferative neoplasms.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Citometría de Flujo , Leucemia Mielomonocítica Juvenil/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Proliferación Celular , Niño , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patología , Leucemia Mielomonocítica Juvenil/terapia , Estadificación de Neoplasias , Fosforilación , Transducción de Señal/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA