Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38202707

RESUMEN

Polyethyleneimine (PEI) has been reported to have good potential for the adsorption of metal ions. In this work, PEI was covalently bound to NiFe2O4@SiO2 nanoparticles to form the new adsorbent NiFe2O4@SiO2-PEI. The material allowed for magnetic separation and was characterized via powder X-ray diffraction (PXRD), showing the pattern of the NiFe2O4 core and an amorphous shell. Field emission scanning electron microscopy (FE-SEM) showed irregular shaped particles with sizes ranging from 50 to 100 nm, and energy-dispersive X-ray spectroscopy (EDX) showed high C and N contents of 36 and 39%, respectively. This large amount of PEI in the materials was confirmed by thermogravimetry-differential thermal analysis (TGA-DTA), showing a mass loss of about 80%. Fourier-transform IR spectroscopy (FT-IR) showed characteristic resonances of PEI dominating the spectrum. The adsorption of CrO42-, Ni2+, and Pb2+ ions from aqueous solutions was studied at different pH, temperatures, metal ion concentrations, and adsorbent dosages. The maximum adsorption capacities of 149.3, 156.7, and 161.3 mg/g were obtained for CrO42-, Ni2+, and Pb2+, respectively, under optimum conditions using 0.075 g of the adsorbent material at a 250 mg/L ion concentration, pH = 6.5, and room temperature.

2.
RSC Adv ; 13(14): 9208-9221, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36950710

RESUMEN

In this study, an effective approach was developed to synthesize a novel, multifunctional ionic liquid nanocatalyst based on zeolite-Y with 4-methylpyridinium chloride (4-MePy-Cl) and calcium ions (Ca/4-MePy-IL@ZY). Then, Fe3O4 nanoparticles were produced inside the zeolite pores with the use of ultrasonic waves. XRD, FESEM, FT-IR, EDX-Map, TGA-DTA, VSM, BET, and atomic absorption techniques were used to identify the structure of the magnetic nanocomposite. Then, its catalytic activity in the one-pot synthesis of 2-aminothiazoles using trichloroisocyanuric acid (TCCA) as a green supplier of halogen ions for intermediates was studied. To provide ideal conditions for the preparation of pure products, first, the one-pot reaction of acetophenone and thiourea in various solvents, different temperatures, and the presence of different amounts of nanocatalysts and the molar amount of TCCA was used. Next, the reaction was investigated in the one-pot preparation of 2-aminothiazole derivatives under optimal conditions. This method replaces iodine (I2), a toxic reagent, for the first time with TCCA, a safe and sustainable source of halogen. The use of non-toxic solvent and a cheap, safe, recyclable nanocatalyst, quick reaction times, high efficiency, and ease of nanocatalyst separation with the aid of a magnet are additional benefits of this method. This has led to this procedure being classified as "green chemistry".

3.
Front Chem ; 9: 723207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676197

RESUMEN

In this study, Pd(II)/TCH@SBA-15 nanocomposites were synthesized by the grafting of 3-chloropropyltriethoxysilane and thiocarbohydrazide on SBA-15 and subsequent deposition of palladium acetates through the ligand-metal coordination method. The structure and morphology of this nanoporous nanocomposite was thoroughly identified by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, atomic absorption spectroscopy, and Brunauer-Emmett-Teller instrumental analyses. Furthermore, the catalytic activity of this nanocomposite was investigated in the three-component synthesis of 3-benzimidazolyl or benzothiazoleyl-1,3-thiazolidin-4-ones via a reaction of 2-aminobenzimidazole or 2-aminobenzothiazole, aromatic aldehydes, and thioglycolic acid in an acetone-H2O mixture under green conditions. The Pd/TCH@SBA-15 nanocatalyst is demonstrated to exhibit a high catalyzing activity in the three-component reaction of the synthesis of N-heterocyclic thiazolidinones with good to excellent yields. One of the advantages of the suggested method is the direct application of the thiocarbohydrazide ligand to stabilize Pd nanoparticles through formation of a stable ring complex without creating an additional Schiff base step. Moreover, this organometallic nanocatalyst can be recycled several times with no notable leaching or loss of performance.

4.
RSC Adv ; 10(68): 41410-41423, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35516548

RESUMEN

In this investigation, a nanoporous zeolite-NaY supported sulfonic acid was synthesized and Ni(ii) ions were successfully stabilized on SO3H@zeolite-Y (Ni/SO3H@zeolite-Y). This novel type of zeolitic nanocomposite was characterized using various techniques including FT-IR, FE-SEM, TGA, BET and EDX. Ni/SO3H@zeolite-Y was used as a multi-functional and highly active nanocatalyst for the three-component synthesis of 3-benzimidazolyl-1,3-thiazolidin-4-ones and new 3-benzthiazoleyl-1,3-thiazolidin-4-ones via cyclocondensation of 2-aminobenzimidazole or 2-aminobenzothiazole, aromatic aldehydes and thioglycolic acid in acetone-H2O at room temperature. This economical chemical procedure has advantages such as excellent yield in short reaction times, convenient manipulation and high purity of products, applicability to a broad range of substrates, and the use of a nontoxic and heterogeneous acid catalyst with good reusability.

5.
RSC Adv ; 10(46): 27439-27446, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35516921

RESUMEN

A copper complex supported on SBA-15 nanoparticles (Cu/TCH-pr@SBA-15) was synthesized by the post-synthesis modification of nano-mesoporous silica with 3-chloropropyltriethoxysilane (CPTES) and thiocarbohydrazide (TCH) and subsequent metal-ligand coordination with Cu(ii). These nanocomposites were thoroughly characterized by FT-IR spectroscopy, TEM, FE-SEM, EDX, atomic absorption spectroscopy and N2 adsorption-desorption (BET) studies. Then, a solvent-free method was developed for the three-component synthesis of 4-arylidene-isoxazolidinones via condensation of hydroxylamine hydrochloride, ethyl acetoacetate and various aromatic aldehydes using Cu/TCH-pr@SBA-15 as a highly efficient nanocatalyst. This new economic and eco-friendly methodology has remarkable advantages such as excellent yields, a shorter reaction time, an easy purification procedure, simplicity, green conditions, solvent-free conditions, and recoverability of the nanocatalyst.

6.
Curr Org Synth ; 17(2): 117-130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32003697

RESUMEN

BACKGROUND: SO3H-functionalized zeolite-Y was prepared and used as a catalyst for the synthesis of 2-aryl-N-benzimidazole-4-thiazolidinones and tri-substituted imidazoles at ambient conditions. OBJECTIVE: The goals of this catalytic method include excellent yields and high purity, inexpensive procedure and ease of product isolation, the use of nontoxic and heterogeneous acid catalyst, shorter reaction times and milder conditions. MATERIALS AND METHODS: NMR spectra were recorded on Brucker spectrophotometer using Me4Si as internal standard. Mass spectra were recorded on an Agilent Technology 5975C VL MSD with tripe-axis detector. FTIR spectra were obtained with KBr disc on a galaxy series FT-IR 5000 spectrometer. The surface morphology of nanostructures was analyzed by FE-SEM (EVO LS 10, Zeiss, Carl Zeiss, Germany). BET analysis were measured at 196 °C by a Japan Belsorb II system after the samples were vacuum dried at 150°C overnight. RESULTS: The NSZ was characterized by FT-IR, FESEM, EDX, XRF, and BET. The catalytic activity of NSZ was investigated for synthesis of 1,3-tiazolidin-4-ones in H2O/Acetone at room temperature. Moreover, NSZ was used for synthesis of tri-substituted imidazoles at 60 °C via solvent-free condensation. Different kinds of aromatic aldehydes were converted to the corresponding of products with good to excellent yields. CONCLUSION: Sulfonated zeolite-Y was as an efficient catalyst for the preparation of N-benzimidazole-2-aryl-1,3- thiazolidin-4-ones and 2,4,5-triaryl-1H-imidazoles. High reaction rates, elimination toxic solvent, simple experimental procedure and reusability of the catalyst are the important features of this protocol.

7.
RSC Adv ; 9(34): 19333-19346, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35519374

RESUMEN

In this study, SO3H@zeolite-Y was synthesized by the reaction of chlorosulfonic acid with zeolite-NaY under solvent-free conditions, which was then supported by Fe3O4 nanoparticles to give SO3H@zeolite-Y (Fe3O4/SO3H@zeolite-Y) magnetic nanoparticles. Several techniques were used to evaluate the physical and chemical characterizations of the zeolitic nanostructures. Fe3O4-loaded sulfonated zeolite was applied as a novel multi-functional zeolite catalyst for the synthesis of imidazole and perimidine derivatives. This efficient methodology has some advantages such as good to excellent yield, high purity of products, reusability of nanocatalyst, simple reaction conditions, environmental friendliness and an economical chemical procedure from the viewpoint of green chemistry.

8.
RSC Adv ; 9(71): 41851-41860, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35541607

RESUMEN

A novel series of N-benzimidazol-2-yl-α-aryl nitrones 3a-j is synthesized via simple one-pot condensation/oxidation of 2-aminobenzimidazole, an aromatic aldehyde and m-chloro perbenzoic acid (m-CPBA) as an effective oxidant using Mn(NO3)2·6H2O as an efficient catalyst at room temperature. All synthesized N-benzimidazolyl nitrones were identified using FTIR, NMR and mass spectroscopy. Also, stability energy theory calculations were performed and 1H NMR computational spectra were generated for the isomeric structures of 3a; the results show that the stability order is oxaziridine (4) followed by the nitrones 3a E and 3a Z . Also, comparing the computational spectroscopy results with the experimental data shows great accordance with nitrone 3a E . Among the remarkable points of this protocol, stable N-heterocyclic nitrones were prepared for the first time from raw materials under mild oxidative conditions. Therefore, they can easily be applied as high-potential intermediates for synthesizing valuable heterocycles in mild conditions. Due to benefits such as the use of inexpensive and available catalysts, short reaction times, high yields, facile workup to obtain pure product, and facile separation of the side product (m-chlorobenzoic acid), this simple protocol complies greatly with the principles of green chemistry.

9.
Iran J Pharm Res ; 14(1): 67-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25561913

RESUMEN

The thiosemicarbazides 3a-c were appeared by reaction of the corresponding substituted hydrazides 1a-c with allylisothiocyanate 2. Synthesis of some novel 1,2,4-triazole-thiols 4a-c bearing a pyridyl unit using 1-(x-picolinoyl)-4-allyl-thiosemicarbazides (x = 2,3,4) in an alkaline solution, is reported. Also, the S-alkylation of triazole derivatives 5-7a-c is described. The structure of the synthesized compounds resulted from the IR, (1)H and -(13)C NMR spectroscopy and elemental analysis data. The antibacterial studies to all of the synthesized compounds against B. cereus, E. coli, P. aeroginosa, S. aureus and E. faecalis as MIC values are reported. Some of these compounds such as 7a, 4a and 3a exhibited a good to significant antibacterial activity.

10.
Iran J Pharm Res ; 13(1): 95-101, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24734060

RESUMEN

Considerable attention has been focused on the synthesis of benzimidazoles due to having a broad spectrum of biological activities such as anti-parasitic, fungicidal, anti-thelemintic and anti-inflammatory activities. As a part of our research work in this area, a series of benzimidasole derivatives (3a-n) were synthesized in good to high yields by reaction of o-phenylenediamine and different aromatic aldehydes in the presence of sodium hexafluroaluminate, Na3AlF6, as an efficient catalyst at 50 (◦)C. This environmentally benign and practical method offers several advantages, such as high yields, use of available catalyst, mild reaction conditions and easy workup. The antibacterial activity of these benzimidasoles was also evaluated using Staphylococcus aureus (mm) and Escherichia coli (mm) bacterial strain. All synthesized materials were characterized using IR and NMR spectroscopy as well as microanalyses data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA