RESUMEN
Targeting RNA with small molecules is an emerging field. While several ligands for different RNA targets are reported, structure-based virtual screenings (VSs) against RNAs are still rare. Here, we elucidated the general capabilities of protein-based docking programs to reproduce native binding modes of small-molecule RNA ligands and to discriminate known binders from decoys by the scoring function. The programs were found to perform similar compared to the RNA-based docking tool rDOCK, and the challenges faced during docking, namely, protomer and tautomer selection, target dynamics, and explicit solvent, do not largely differ from challenges in conventional protein-ligand docking. A prospective VS with the Bacillus subtilis preQ1-riboswitch aptamer domain performed with FRED, HYBRID, and FlexX followed by microscale thermophoresis assays identified six active compounds out of 23 tested VS hits with potencies between 29.5 nM and 11.0 µM. The hits were selected not solely based on their docking score but for resembling key interactions of the native ligand. Therefore, this study demonstrates the general feasibility to perform structure-based VSs against RNA targets, while at the same time it highlights pitfalls and their potential solutions when executing RNA-ligand docking.
Asunto(s)
Riboswitch , Ligandos , Estudios Prospectivos , Proteínas , Pirimidinonas , Pirroles , ARNRESUMEN
Targeting RNA including viral RNAs with small molecules is an emerging field. The hepatitis C virus internal ribosome entry site (HCV IRES) is a potential target for translation inhibitor development to raise drug resistance mutation preparedness. Using RNA-focused and unbiased molecule libraries, a structure-based virtual screening (VS) by molecular docking and pharmacophore analysis was performed against the HCV IRES subdomain IIa. VS hits were validated by a microscale thermophoresis (MST) binding assay and a Förster resonance energy transfer (FRET) assay elucidating ligand-induced conformational changes. Ten hit molecules were identified with potencies in the high to medium micromolar range proving the suitability of structure-based virtual screenings against RNA-targets. Hit compounds from a 2-guanidino-quinazoline series, like the strongest binder, compound 8b with an EC50 of 61 µM, show low molecular weight, moderate lipophilicity and reduced basicity compared to previously reported IRES ligands. Therefore, it can be considered as a potential starting point for further optimization by chemical derivatization.
RESUMEN
Microscale Thermophoresis (MST) is a powerful biophysical technique that measures the mobility of biomolecules in response to a temperature gradient, making it useful for investigating the interactions between biological molecules. This study presents a novel methodology for studying RNA-containing samples using non-covalent nucleic acid-sensitive dyes in MST. This "mix-and-measure" protocol uses non-covalent dyes, such as those from the Syto or Sybr series, which lead to the statistical binding of one fluorophore per RNA oligo showing key advantages over traditional covalent labelling approaches. This new approach has been successfully used to study the binding of ligands to RNA molecules (e.g., SAM- and PreQ1 riboswitches) and the identification of modifications (e.g., m6A) in short RNA oligos which can be written by the RNA methyltransferase METTL3/14.
RESUMEN
Differential scanning fluorimetry (DSF) is a widely used biophysical technique with applications to drug discovery and protein biochemistry. DSF experiments are commonly performed in commercial real-time polymerase chain reaction (qPCR) thermal cyclers or nanoDSF instruments. Here, we report the construction, validation, and example applications of an open-source DSF system for 176 , which, in addition to protein-DSF experiments, also proved to be a versatile biophysical instrument for less conventional RNA-DSF experiments. Using 3D-printed parts made of polyoxymethylene, we were able to fabricate a thermostable machine chassis for protein-melting experiments. The combination of blue high-power LEDs as the light source and stage light foil as filter components was proven to be a reliable and affordable alternative to conventional optics equipment for the detection of SYPRO Orange or Sybr Gold fluorescence. The ESP32 microcontroller is the core piece of this openDSF instrument, while the in-built I2S interface was found to be a powerful analog-to-digital converter for fast acquisition of fluorescence and temperature data. Airflow heating and inline temperature control by thermistors enabled high-accuracy temperature management in PCR tubes (±0.1 °C) allowing us to perform high-resolution thermal shift assays (TSA) from exemplary biological applications.