Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
2.
Arthritis Res Ther ; 26(1): 135, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026358

RESUMEN

With great interest, we have read the recent article "Expression of HIF1α in intestinal epithelium restricts arthritis inflammation by inhibiting RIPK3-induced cell death machinery" published by Lyu et al. in Annals of the Rheumatic Diseases. The authors pose that the expression of hypoxia-inducible factor 1 alpha in intestinal epithelial cells represents a crucial check point for the development of arthritis by impeding necroptosis of intestinal epithelial cells and safeguarding the intestinal barrier integrity. Previous studies suggest a potential mechanistic link between faulty intestinal barrier function and potentiation of arthritogenic immune cells. From this perspective, bolstering the intestinal barrier integrity arose as an attractive therapeutic strategy for rheumatoid arthritis.


Asunto(s)
Mucosa Intestinal , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Animales , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
3.
Biomedicines ; 12(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255243

RESUMEN

Evidence from animal models and human genetics implicates Toll-like Receptors (TLRs) in the pathogenesis of Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). Endosomal TLRs sensing nucleic acids were proposed to induce lupus-promoting signaling in dendritic cells, B cells, monocytes, and macrophages. Ligation of TLR4 in synovial macrophages and fibroblast-like synoviocytes (FLSs) by endogenous ligands was suggested to induce local production of mediators that amplify RA synovitis. Inhibition of TLRs using antagonists or monoclonal antibodies (mAbs) that selectively prevent extracellular or endosomal TLR ligation has emerged as an attractive treatment strategy for SLE and RA. Despite the consistent success of selective inhibition of TLR ligation in animal models, DV-1179 (dual TLR7/9 antagonist) failed to achieve pharmacodynamic effectiveness in SLE, and NI-0101 (mAb against TLR4) failed to improve arthritis in RA. Synergistic cooperation between TLRs and functional redundancy in human diseases may require pharmacologic targeting of intracellular molecules that integrate signaling downstream of multiple TLRs. Small molecules inhibiting shared kinases involved in TLR signaling and peptidomimetics disrupting the assembly of common signalosomes ("Myddosome") are under development. Targeted degraders (proteolysis-targeting chimeras (PROTACs)) of intracellular molecules involved in TLR signaling are a new class of TLR inhibitors with promising preliminary data awaiting further clinical validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA