Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 726: 150244, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38905785

RESUMEN

Sulforaphane (SFaN) is a food-derived compound with several bioactive properties, including atherosclerosis, diabetes, and obesity treatment. However, the mechanisms by which SFaN exerts its various effects are still unclear. To elucidate the mechanisms of the various effects of SFaN, we explored novel SFaN-binding proteins using SFaN beads and identified acyl protein thioesterase 2 (APT2). We also found that SFaN binds to the APT2 via C56 residue and attenuates the palmitoylation of APT2, thereby reducing plasma membrane localization of APT2. This study reveals a novel bioactivity of SFaN as a regulator of APT2 protein palmitoylation.


Asunto(s)
Isotiocianatos , Lipoilación , Sulfóxidos , Tioléster Hidrolasas , Isotiocianatos/metabolismo , Isotiocianatos/farmacología , Isotiocianatos/química , Sulfóxidos/farmacología , Sulfóxidos/metabolismo , Sulfóxidos/química , Humanos , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/química , Lipoilación/efectos de los fármacos , Unión Proteica , Células HEK293 , Membrana Celular/metabolismo
2.
Biochem Biophys Res Commun ; 697: 149498, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38262291

RESUMEN

Regulatory T cells (Tregs) are lymphocytes that play a central role in peripheral immune tolerance. Tregs are promising targets for the prevention and suppression of autoimmune diseases, allergies, and graft-versus-host disease, and treatments aimed at regulating their functions are being developed. In this study, we created a new modality consisting of a protein molecule that suppressed excessive immune responses by effectively and preferentially expanding Tregs. Recent studies reported that tumor necrosis factor receptor type 2 (TNFR2) expressed on Tregs is involved in the proliferation and activation of Tregs. Therefore, we created a functional immunocytokine, named TNFR2-ICK-Ig, consisting of a fusion protein of an anti-TNFR2 single-chain Fv (scFv) and a TNFR2 agonist TNF-α mutant protein, as a new modality that strongly enhances TNFR2 signaling. The formation of agonist-receptor multimerization (TNFR2 cluster) is effective for the induction of a strong TNFR2 signal, similar to the TNFR2 signaling mechanism exhibited by membrane-bound TNF. TNFR2-ICK-Ig improved the TNFR2 signaling activity and promoted TNFR2 cluster formation compared to a TNFR2 agonist TNF-α mutant protein that did not have an immunocytokine structure. Furthermore, the Treg expansion efficiency was enhanced. TNFR2-ICK-Ig promotes its effects via scFv, which crosslinks receptors whereas the agonists transmit stimulatory signals. Therefore, this novel molecule expands Tregs via strong TNFR2 signaling by the formation of TNFR2 clustering.


Asunto(s)
Anticuerpos de Cadena Única , Linfocitos T Reguladores , Proteínas Portadoras/metabolismo , Proteínas Mutantes/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Animales , Ratones
3.
Bioorg Med Chem ; 110: 117814, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981217

RESUMEN

Oligonucleotide therapeutics, particularly antisense oligonucleotides (ASOs), have emerged as promising candidates in drug discovery. However, their effective delivery to the target tissues and cells remains a challenge, necessitating the development of suitable drug delivery technologies for ASOs to enable their practical application. In this study, we synthesized a library of chemically modified dipeptide-ASO conjugates using a recent synthetic method based on the Ugi reaction. We then conducted in vitro screening of this library using luciferase-expressing cell lines to identify ligands capable of enhancing ASO activity. Our findings suggest that N-(4-nitrophenoxycarbonyl)glycine may interact with the thiophosphate moiety of the phosphorothioate-modification in ASO. Through our screening efforts, we identified two ligands that modestly reduced luciferase luminescence in a cell type-selective manner. Furthermore, quantification of luciferase mRNA levels revealed that one of these promising dipeptide-ASO conjugates markedly suppressed luciferase RNA levels through its antisense effect in prostate-derived DU-145 cells compared to the ASOs without ligand modification.


Asunto(s)
Dipéptidos , Oligonucleótidos Antisentido , Dipéptidos/química , Dipéptidos/síntesis química , Dipéptidos/farmacología , Humanos , Ligandos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/farmacología , Línea Celular Tumoral , Estructura Molecular , Relación Estructura-Actividad , Luciferasas/metabolismo , Luciferasas/genética , Relación Dosis-Respuesta a Droga
4.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34625475

RESUMEN

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.


Asunto(s)
COVID-19/inmunología , Modelos Animales de Enfermedad , Macaca fascicularis/inmunología , Enfermedades de los Primates/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Pulmón/diagnóstico por imagen , Pulmón/inmunología , Pulmón/virología , Macaca fascicularis/virología , Masculino , Enfermedades de los Primates/virología , SARS-CoV-2/fisiología , Tomografía Computarizada por Rayos X/métodos , Esparcimiento de Virus/inmunología , Esparcimiento de Virus/fisiología
5.
Bioorg Med Chem ; 81: 117192, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36780806

RESUMEN

Herein, we describe the design and synthesis of multi-conjugatable fatty acid monomer phosphoramidites and their conjugation to antisense oligonucleotides (ASOs). Multivalent long-chain fatty acid conjugation improved the cellular uptake of ASOs but decreased in vitro activity due to alterations in physical properties and cellular localization. In addition, multivalently fatty acid-conjugated ASOs showed different organ specificity compared with that of unconjugated ASO in in vivo experiment. Although optimization of the linker structure between the fatty acid moiety and the ASO may be required, divalent long-chain fatty acid conjugation provides a new approach to increase endocytosis, thereby potentially improving the activity of therapeutic ASOs.


Asunto(s)
Ácidos Grasos , Oligonucleótidos Antisentido , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/química , Endocitosis , Transporte Biológico
6.
J Immunol ; 206(8): 1740-1751, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33782090

RESUMEN

Regulatory T cells (Tregs) are a subpopulation of lymphocytes that play a role in suppressing and regulating immune responses. Recently, it was suggested that controlling the functions and activities of Tregs might be applicable to the treatment of human diseases such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease. TNF receptor type 2 (TNFR2) is a target molecule that modulates Treg functions. In this study, we investigated the role of TNFR2 signaling in the differentiation and activation of mouse Tregs. We previously reported the generation of a TNFR2-selective agonist TNF mutant, termed R2agoTNF, by using our unique cytokine modification method based on phage display. R2agoTNF activates cell signaling via mouse TNFR2. In this study, we evaluated the efficacy of R2agoTNF for the proliferation and activation of Tregs in mice. R2agoTNF expanded and activated mouse CD4+CD25+ Tregs ex vivo. The structural optimization of R2agoTNF by internal cross-linking or IgG-Fc fusion selectively and effectively enhanced Treg expansion in vivo. Furthermore, the IgG-Fc fusion protein suppressed skin-contact hypersensitivity reactions in mice. TNFR2 agonists are expected to be new Treg expanders.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad Injerto contra Huésped , Animales , Humanos , Ratones , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Linfocitos T Reguladores , Factor de Necrosis Tumoral alfa
7.
Angew Chem Int Ed Engl ; 62(30): e202306431, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37259239

RESUMEN

Proximity-induced chemical reactions are site-specific and rapid by taking advantage of their high affinity and highly selective interactions with the template. However, reactions induced solely by antibody-antigen interactions have not been developed. Herein, we propose a biepitopic antigen-templated chemical reaction (BATER) as a novel template reaction. In BATER, reactive functional groups are conjugated to two antibodies that interact with two epitopes of the same antigen to accelerate the reaction. We developed a method for visualizing the progress of BATER using fluorogenic click chemistry for optimal antibody selection and linker design. The reaction is accelerated in the presence of a specific antigen in a linker length-dependent manner. The choice of the antibody epitope is important for a rapid reaction. This design will lead to various applications of BATER in living systems.


Asunto(s)
Epítopos , Epítopos/química , Epítopos/inmunología , Anticuerpos/química , Anticuerpos/inmunología , Antígenos/química , Antígenos/inmunología , Colorantes Fluorescentes/química
8.
Clin Proteomics ; 19(1): 3, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016606

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) has few objective symptoms, and it is difficult to make an early diagnosis by using existing methods. Therefore, new biomarkers enabling diagnosis of renal dysfunction at an early stage need to be developed. Here, we searched for new biomarkers of CKD by focusing on kidney-derived proteins that could sensitively reflect that organ's disease state. METHODS: To identify candidate marker proteins, we performed a proteomics analysis on renal influx and efflux blood collected from the same individual. RESULTS: Proteomics analysis revealed 662 proteins in influx blood and 809 in efflux. From these identified proteins, we selected complement C1q as a candidate; the plasma C1q level was significantly elevated in the renal efflux of donors. Moreover, the plasma concentration of C1q in a mouse model of diabetic nephropathy was significantly increased, in association with increases in blood glucose concentration and urinary protein content. Importantly, we demonstrated that the tendency of C1q to increase in the plasma of CKD patients was correlated with a decrease in their estimated glomerular filtration rate. CONCLUSION: Overall, our results indicate that our approach of focusing on kidney-derived proteins is useful for identifying new CKD biomarkers and that C1q has potential as a biomarker of renal function.

9.
Bioorg Med Chem ; 72: 116972, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36057217

RESUMEN

The artificial nucleobase 1,3-diaza-2-oxophenoxazine (tCO) and its derivative G-clamp strongly bind to guanine and, when incorporated into double-stranded DNA, significantly increase the stability of the latter. As the phenoxazine skeleton is a constituent of major pharmaceuticals, we hypothesized that oligonucleotides (ONs) containing phenoxazine bases would induce property changes related to intracellular uptake and migration in tissues. In this study, we designed and synthesized a novel G-clamp-linker antisense oligonucleotide (ASO) in which a G-clamp base with a flexible linker was introduced into the 5'-end of an ASO targeting mouse long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (mMALAT1). Compared to unconjugated ASO, the G-clamp-linker ASO induced significantly more effective knockdown of mMALAT1 in mouse skeletal muscle. The ASOs conjugated with 2'-deoxyribonucleotide(s) bearing a tCO nucleobase at the 5'-end exhibited a similar knockdown effect in skeletal muscle. Thus, it may be possible to improve therapeutic effects against skeletal muscle diseases, such as muscular dystrophy, by using ONs with incorporated phenoxazine nucleobases.


Asunto(s)
Oligonucleótidos , ARN Largo no Codificante , Animales , ADN , Desoxirribonucleótidos , Guanina , Ratones , Oligonucleótidos/farmacología , Oligonucleótidos Antisentido/genética , Oxazinas , Preparaciones Farmacéuticas
10.
J Biol Chem ; 295(28): 9379-9391, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32398258

RESUMEN

Excessive activation of the proinflammatory cytokine tumor necrosis factor-α (TNFα) is a major cause of autoimmune diseases, including rheumatoid arthritis. TNFα induces immune responses via TNF receptor 1 (TNFR1) and TNFR2. Signaling via TNFR1 induces proinflammatory responses, whereas TNFR2 signaling is suggested to suppress the pathophysiology of inflammatory diseases. Therefore, selective inhibition of TNFR1 signaling and preservation of TNFR2 signaling activities may be beneficial for managing autoimmune diseases. To this end, we developed a TNFR1-selective, antagonistic TNFα mutant (R1antTNF). Here, we developed an R1antTNF derivative, scR1antTNF-Fc, which represents a single-chain form of trimeric R1antTNF with a human IgG-Fc domain. scR1antTNF-Fc had properties similar to those of R1antTNF, including TNFR1-selective binding avidity, TNFR1 antagonistic activity, and thermal stability, and had a significantly extended plasma t1/2in vivo In a murine rheumatoid arthritis model, scR1antTNF-Fc and 40-kDa PEG-scR1antTNF (a previously reported PEGylated form) delayed the onset of collagen-induced arthritis, suppressed arthritis progression in mice, and required a reduced frequency of administration. Interestingly, with these biologic treatments, we observed an increased ratio of regulatory T cells to conventional T cells in lymph nodes compared with etanercept, a commonly used TNF inhibitor. Therefore, scR1antTNF-Fc and 40-kDa PEG-scR1antTNF indirectly induced immunosuppression. These results suggest that selective TNFR1 inhibition benefits the management of autoimmune diseases and that R1antTNF derivatives hold promise as new-modality TNF-regulating biologics.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/farmacología , Inmunoglobulina G/farmacología , Mutación Missense , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Sustitución de Aminoácidos , Animales , Línea Celular , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Ratones , Ratones Endogámicos BALB C , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Proteínas Recombinantes de Fusión/genética , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/genética
11.
J Biol Chem ; 292(16): 6438-6451, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28235800

RESUMEN

Tumor necrosis factor-α (TNF) exerts its biological effect through two types of receptors, p55 TNF receptor (TNFR1) and p75 TNF receptor (TNFR2). An inflammatory response is known to be induced mainly by TNFR1, whereas an anti-inflammatory reaction is thought to be mediated by TNFR2 in some autoimmune diseases. We have been investigating the use of an antagonistic TNF mutant (TNFR1-selective antagonistic TNF mutant (R1antTNF)) to reveal the pharmacological effect of TNFR1-selective inhibition as a new therapeutic modality. Here, we aimed to further improve and optimize the activity and behavior of this mutant protein both in vitro and in vivo Specifically, we examined a trimeric structural fusion of R1antTNF, formed via the introduction of short peptide linkers, as a strategy to enhance bioactivity and molecular stability. By comparative analysis with R1antTNF, the trimeric fusion, referred to as single-chain R1antTNF (scR1antTNF), was found to retain in vitro molecular properties of receptor selectivity and antagonistic activity but displayed a marked increase in thermal stability. The residence time of scR1antTNF in vivo was also significantly prolonged. Furthermore, molecular modification using polyethylene glycol (PEG) was easily controlled by limiting the number of reactive sites. Taken together, our findings show that scR1antTNF displays enhanced molecular stability while maintaining biological activity compared with R1antTNF.


Asunto(s)
Proteínas Mutantes/química , Mutación , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/genética , Animales , Antiinflamatorios/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Sitios de Unión , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Citocinas/metabolismo , Diseño de Fármacos , Femenino , Fibroblastos/metabolismo , Humanos , Inflamación , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , Conformación Proteica , Ingeniería de Proteínas , Multimerización de Proteína , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química
12.
Rapid Commun Mass Spectrom ; 32(23): 1984-1990, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30152908

RESUMEN

RATIONALE: Oligonucleotide therapeutics have recently gained much attention, but its pharmacokinetic evaluation methods are still not sufficient, and, in particular, more tools are needed to evaluate their tissue distribution and metabolites. We developed a matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS)-based method to evaluate the tissue distribution of oligonucleotide therapeutics. METHODS: We used an antisense oligonucleotide containing locked nucleic acids (LNA-A). Various washing protocols were examined using mouse kidney homogenate sections. Next, we applied a two-step matrix preparation strategy. As a first step, 3-hydroxypicolinic acid (3-HPA) matrix containing citrate and amines was sprayed using an airbrush and subsequently 3-HPA matrix containing citrate only was sprayed using the ImagePrep. Finally, kidney sections prepared from LNA-A-dosed mice were treated with our optimized method and analyzed with MALDI-IMS. RESULTS: The selected washing method made it possible to detect LNA-A with MALDI-IMS and, furthermore, our developed matrix pretreatment method enhanced signal intensity approximately two-fold. MALDI-IMS revealed that LNA-A localized in a portion presumed to be the renal cortex. We also obtained information on LNA-A metabolites, which showed the same distribution profile as LNA-A in kidneys. CONCLUSIONS: This study shows that MALDI-IMS can be applied to evaluate the tissue distribution of oligonucleotide therapeutics. Our method can evaluate the tissue distribution along with metabolites and has the potential to help the development of novel oligonucleotide therapeutics.


Asunto(s)
Riñón/química , Oligonucleótidos Antisentido/química , Espectrometría de Masas en Tándem/métodos , Animales , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacocinética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Distribución Tisular
13.
J Cell Sci ; 128(4): 656-69, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25609706

RESUMEN

Tumor necrosis factor (TNF) is an important mediator that triggers onset of autoimmune diseases and exerts its biological effects by interacting through two receptors, TNFR1 (also known as TNFRSF1A) and TNFR2 (also known as TNFRSF1B). TNFR2 signaling has significant potential to exert pro-survival and protective roles in several diseases. Unlike TNFR1 signaling, however, the mechanism of TNFR2 signal transduction is poorly understood, and few of its adaptor molecules are known. The present study utilized a proteomics approach to search for adaptor molecules in the TNFR2 signaling complex and identified aminopeptidase P3 (APP3, also known as XPNPEP3) to be a key molecule. One of its two isoforms, mitochondrial APP3 (APP3m) but not cytosolic APP3 (APP3c), was recruited to TNFR2 and shown to regulate TNF-TNFR2-dependent phosphorylation of JNK1 (also known as MAPK8) and JNK2 (also known as MAPK9). Furthermore, APP3m was released from mitochondria upon TNF stimulation in the absence of mitochondrial outer membrane permeabilization (MOMP). The observation of increased cell death upon downregulation of APP3m also suggested that APP3m exerts an anti-apoptotic function. These findings reveal that APP3m is a new member of the TNF-TNFR2 signaling complex and characterize an APP3-mediated TNFR2 signal transduction mechanism that induces activation of JNK1 and JNK2.


Asunto(s)
Aminopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Apoptosis/fisiología , Transporte Biológico/fisiología , Línea Celular , Células HEK293 , Humanos , Membranas Mitocondriales/metabolismo , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal
14.
Biol Pharm Bull ; 40(5): 726-728, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458361

RESUMEN

We previously reported that unmodified silica nanoparticles with diameters of 70 nm (nSP70) induced liver damage in mice, whereas nSP70 modified with carboxyl or amino groups did not. In addition, we have found that both unmodified and modified nSP70s localize in both Kupffer cells and parenchymal hepatocytes. We therefore evaluated the contributions of nSP70 uptake by these cell populations to liver damage. To this end, we pretreated mice with gadolinium (III) chloride hydrate (GdCl3) to prevent nSP70 uptake by Kupffer cells, subsequently injected the mice with either type of nSP70, and then assessed plasma levels of alanine aminotransferase (ALT). In mice given GdCl3, unmodified nSP70 increased ALT levels. From these data, we hypothesized that in GdCl3-treated mice, the unmodified nSP70 that was prevented from entering Kupffer cells was shunted to parenchymal hepatocytes, where it induced cytotoxicity and increased liver damage. In contrast, GdCl3 pretreatment had no effect on ALT levels in mice injected with surface-modified nSP70s, suggesting that modified nSP70s spared parenchymal hepatocytes and thus induced negligible liver damage. In cytotoxicity analyses, the viability of a parenchymal hepatocyte line was greater when exposed to surface-modified nSP70s than to unmodified nSP70s. These findings imply that the decreased liver damage associated with surface-modified compared with unmodified nSP70 is attributable to decreased cytotoxicity to parenchymal hepatocytes.


Asunto(s)
Aminas/química , Ácidos Carboxílicos/química , Nanopartículas/química , Dióxido de Silicio/química , Alanina Transaminasa/análisis , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Femenino , Gadolinio/química , Hepatocitos/efectos de los fármacos , Macrófagos del Hígado/efectos de los fármacos , Pruebas de Función Hepática , Ratones , Ratones Endogámicos BALB C , Nanopartículas/toxicidad , Tamaño de la Partícula , Dióxido de Silicio/toxicidad , Propiedades de Superficie
15.
J Biol Chem ; 290(39): 24021-35, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26272613

RESUMEN

Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Factor Nuclear 4 del Hepatocito/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Luteolina/farmacología , Animales , Glucemia/metabolismo , Células CACO-2 , Células HEK293 , Células Hep G2 , Humanos , Lipoproteínas/sangre , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/patología , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/biosíntesis
16.
Chembiochem ; 17(2): 181-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26561285

RESUMEN

Hypoxia-adapted cancer cells in tumors contribute to the pathological progression of cancer. Cancer research has therefore focused on the identification of molecules responsible for hypoxia adaptation in cancer cells, as well as the development of new compounds with action against hypoxia-adapted cancer cells. The marine natural product furospinosulin-1 (1) has displayed hypoxia-selective growth inhibition against cultured cancer cells, and has shown in vivo anti-tumor activity, although its precise mode of action and molecular targets remain unclear. In this study, we found that 1 is selectively effective against hypoxic regions of tumors, and that it directly binds to the transcriptional regulators p54(nrb) and LEDGF/p75, which have not been previously identified as mediators of hypoxia adaptation in cancer cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/química , Proteínas Asociadas a Matriz Nuclear/química , Factores de Transcripción de Octámeros/química , Proteínas de Unión al ARN/química , Sesterterpenos/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Hipoxia de la Célula/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas de Unión al ADN , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Estructura Molecular , Neoplasias/tratamiento farmacológico , Unión Proteica/efectos de los fármacos , Sesterterpenos/farmacología , Sesterterpenos/uso terapéutico
17.
Biochem Biophys Res Commun ; 456(4): 908-12, 2015 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-25528586

RESUMEN

The EPH receptor A10 (EphA10) is up-regulated in breast cancer but is not normally expressed in healthy tissue, thus it has been suggested that EphA10 may be a useful target for cancer therapy. This study reports a diabody, an antibody derivative binding two different target molecules, EphA10 expressed in tumor cells and CD3 expressed in T cells, which showed T cell dependent-cytotoxicity. The diabody, which has His-tagged and FLAG-tagged chains, was expressed in Escherichia coli and purified in both heterodimer (Db-1) and homodimer (Db-2) formulations by liquid chromatography. Flow cytometry analysis using EphA10-expressing cells showed that binding activity of heterodimers was stronger than that of homodimers. Addition of diabodies to PBMC cultures resulted in T-cell mediated redirected lysis, and the bioactivity was consistent with the stronger binding activity of heterodimeric diabody formulations. Our results indicate that diabodies recognizing both EphA10 and CD3 could have a range of potential applications in cancer therapy, such as breast cancers that express the EPH receptor A10, especially triple negative breast cancer.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Biespecíficos/inmunología , Complejo CD3/inmunología , Receptores de la Familia Eph/inmunología , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Unión Proteica , Transfección
18.
Nanotechnology ; 26(24): 245101, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26011124

RESUMEN

Recently, nanomaterial-mediated biological effects have been shown to be governed by the interaction of nanomaterials with some kinds of proteins in biological fluids, and the physical characteristics of the nanomaterials determine the extent and type of their interactions with proteins. Here, we examined the relationships between the surface properties of amorphous silica nanoparticles with diameters of 70 nm (nSP70), their interactions with some proteins in biological fluids, and their toxicity in mice after intravenous administration. The surface modification of nSP70 with amino groups (nSP70-N) prevented acute lethality and abnormal activation of the coagulation cascade found in the nSP70-treated group of mice. Since our previous study showed that coagulation factor XII played a role in the nSP70-mediated abnormal activation of the coagulation cascade, we examined the interaction of nSP70 and nSP70-N with coagulation factor XII. Coagulation factor XII bonded to the surface of nSP70 to a greater extent than that observed for nSP70-N, and consequently more activation of coagulation factor XII was observed for nSP70 than for nSP70-N. Collectively, our results suggest that controlling the interaction of nSP70 with blood coagulation factor XII by modifying the surface properties would help to inhibit the nSP70-mediated abnormal activation of the blood coagulation cascade.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Nanopartículas/toxicidad , Corona de Proteínas/metabolismo , Dióxido de Silicio/toxicidad , Administración Intravenosa , Animales , Factor XIIa/metabolismo , Femenino , Ratones , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Dióxido de Silicio/administración & dosificación , Propiedades de Superficie
19.
Part Fibre Toxicol ; 12: 16, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113229

RESUMEN

BACKGROUND: The skin is a key route of human exposure to nanomaterials, which typically occurs simultaneously with exposure to other chemical and environmental allergen. However, little is known about the hazards of nanomaterial exposure via the skin, particularly when accompanied by exposure to other substances. RESULTS: Repeated topical treatment of both ears and the shaved upper back of NC/Nga mice, which are models for human atopic dermatitis (AD), with a mixture of mite extract and silica nanoparticles induced AD-like skin lesions. Measurements of ear thickness and histologic analyses revealed that cutaneous exposure to silica nanoparticles did not aggravate AD-like skin lesions. Instead, concurrent cutaneous exposure to mite allergens and silica nanoparticles resulted in the low-level production of allergen-specific IgGs, including both the Th2-related IgG1 and Th1-related IgG2a subtypes, with few changes in allergen-specific IgE concentrations and in Th1 and Th2 immune responses. In addition, these changes in immune responses increased the sensitivity to anaphylaxis. Low-level IgG production was induced when the mice were exposed to allergen-silica nanoparticle agglomerates but not when the mice exposed to nanoparticles applied separately from the allergen or to well-dispersed nanoparticles. CONCLUSIONS: Our data suggest that silica nanoparticles themselves do not directly affect the allergen-specific immune response after concurrent topical application of nanoparticles and allergen. However, when present in allergen-adsorbed agglomerates, silica nanoparticles led to a low IgG/IgE ratio, a key risk factor of human atopic allergies. We suggest that minimizing interactions between nanomaterials and allergens will increase the safety of nanomaterials applied to skin.


Asunto(s)
Anafilaxia/inmunología , Antígenos Dermatofagoides , Dermatitis Alérgica por Contacto/inmunología , Inmunoglobulina E/inmunología , Nanopartículas , Dióxido de Silicio , Piel/inmunología , Anafilaxia/sangre , Animales , Citocinas/sangre , Citocinas/inmunología , Dermatitis Alérgica por Contacto/sangre , Dermatitis Alérgica por Contacto/patología , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Medición de Riesgo , Piel/patología , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Factores de Tiempo
20.
Biochem Biophys Res Commun ; 450(1): 545-9, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24924629

RESUMEN

We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore, the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores de la Familia Eph/metabolismo , Anticuerpos Monoclonales/inmunología , Antineoplásicos/inmunología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Masculino , Neoplasias de la Próstata/patología , Receptores de la Familia Eph/inmunología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA