Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Microbiol ; 113(2): 430-451, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31743541

RESUMEN

ZC3H20 and ZC3H21 are related trypanosome proteins with two C(x)8 C(x)5 C(x)3 H zinc finger motifs. ZC3H20 is present at a low level in replicating mammalian-infective bloodstream forms, but becomes more abundant when they undergo growth arrest at high density; ZC3H21 appears only in the procyclic form of the parasite, which infects Tsetse flies. Each protein binds to several hundred mRNAs, with overlapping but not identical specificities. Both increase expression of bound mRNAs, probably through recruitment of the MKT1-PBP1 complex. At least 28 of the bound mRNAs decrease after depletion of ZC3H20, or of ZC3H20 and ZC3H21 together; their products include procyclic-specific proteins of the plasma membrane and energy metabolism. Simultaneous depletion of ZC3H20 and ZC3H21 causes procyclic forms to shrink and stop growing; in addition to decreases in target mRNAs, there are other changes suggestive of loss of developmental regulation. The bloodstream-form-specific protein RBP10 controls ZC3H20 and ZC3H21 expression. Interestingly, some ZC3H20/21 target mRNAs also bind to and are repressed by RBP10, allowing for dynamic regulation as RBP10 decreases and ZC3H20 and ZC3H21 increase during differentiation.


Asunto(s)
ARN Mensajero/metabolismo , Trypanosoma brucei brucei , Dedos de Zinc/genética , Animales , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/genética , ARN Protozoario , Proteínas de Unión al ARN/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Moscas Tse-Tse/parasitología
2.
PLoS One ; 16(11): e0258903, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807934

RESUMEN

Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3'-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Unión a Caperuzas de ARN/metabolismo , Caperuzas de ARN/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Trypanosoma brucei brucei/metabolismo , Diferenciación Celular , Genes Reporteros , Estadios del Ciclo de Vida , Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo
3.
PLoS Negl Trop Dis ; 15(9): e0009738, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34516555

RESUMEN

Most researchers who study unicellular eukaryotes work with an extremely limited number of laboratory-adapted isolates that were obtained from the field decades ago, but the effects of passage in laboratory rodents, and adaptation to in vitro culture, have been little studied. For example, the vast majority of studies of Trypanosoma brucei biology have concentrated on just two strains, Lister 427 and EATRO1125, which were taken from the field over half a century ago and have since have undergone innumerable passages in rodents and culture. We here describe two new Trypanosoma brucei brucei strains. MAK65 and MAK98, which have undergone only 3 rodent passages since isolation from Ugandan cattle. High-coverage sequencing revealed that adaptation of the parasites to culture was accompanied by changes in gene copy numbers. T. brucei has so far been considered to be uniformly diploid, but we also found trisomy of chromosome 5 not only in one Lister 427 culture, but also in the MAK98 field isolate. Trisomy of chromosome 6, and increased copies of other chromosome segments, were also seen in established cultured lines. The two new T. brucei strains should be useful to researchers interested in trypanosome differentiation and pathogenicity. Initial results suggested that the two strains have differing infection patterns in rodents. MAK65 is uniformly diploid and grew more reproducibly in bloodstream-form culture than MAK98.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Dosificación de Gen , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/fisiología , Tripanosomiasis Africana/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/sangre , Proteínas Protozoarias , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/parasitología
4.
PLoS Negl Trop Dis ; 12(2): e0006280, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29474390

RESUMEN

All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.


Asunto(s)
Perfilación de la Expresión Génica , ARN Protozoario/aislamiento & purificación , Transcriptoma , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/aislamiento & purificación , Tripanosomiasis Africana/parasitología , Animales , Técnicas Bacteriológicas/métodos , ADN de Cinetoplasto/genética , Humanos , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Protozoario/genética , Proteínas de Unión al ARN/genética , Ratas , Roedores/parasitología , Trypanosoma brucei rhodesiense/crecimiento & desarrollo , Trypanosoma brucei rhodesiense/metabolismo , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA