Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(4): 231978, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38633346

RESUMEN

Human activities have an overwhelming impact on the natural environment, leading to a deep biodiversity crisis whose effects range from genes to ecosystems. Here, we analysed the effect of such anthropogenic impacts on bdelloid rotifers (Rotifera Bdelloidea), for whom these effects are poorly understood. We targeted bdelloid rotifers living in lichen patches across urbanization gradients in Flanders and Brussels (Belgium). Urbanization was measured as the percentage of built-up area (BU) across different spatial scales, at circles from 50 to 3200 m of radius around the lichen. Urbanization effects on biodiversity were assessed on abundance, species richness and community-weighted mean body size of bdelloid rotifers, as well as on genetic diversity of a mitochondrial marker (cytochrome c oxidase subunit I) of one of the most common and widespread bdelloid species, Adineta vaga. Overall, no negative effect of urbanization was found at any diversity level and any spatial scale. Counterintuitively, the BU area quantified at the largest spatial scale had a positive effect on abundance. These results leave open the question of whether negative effects of urbanization are present for bdelloid rotifers, if they are mediated by other unexplored drivers, or if such effects are only visible at even larger spatial scales.

2.
Front Microbiol ; 11: 1979, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903389

RESUMEN

Picocyanobacteria of the genus Synechococcus are major contributors to global primary production and nutrient cycles due to their oxygenic photoautotrophy, their abundance, and the extensive distribution made possible by their wide-ranging biochemical capabilities. The recent recovery and isolation of strains from the deep euxinic waters of the Black Sea encouraged us to expand our analysis of their adaptability also beyond the photic zone of aquatic environments. To this end, we quantified the total abundance and distribution of Synechococcus along the whole vertical profile of the Black Sea by flow cytometry, and analyzed the data obtained in light of key environmental factors. Furthermore, we designed phylotype-specific primers using the genomes of two new epipelagic coastal strains - first described here - and of two previously described mesopelagic strains, analyzed their presence/abundance by qPCR, and tested this parameter also in metagenomes from two stations at different depths. Together, whole genome sequencing, metagenomics and qPCR techniques provide us with a higher resolution of Synechococcus dynamics in the Black Sea. Both phylotypes analyzed are abundant and successful in epipelagic coastal waters; but while the newly described epipelagic strains are specifically adapted to this environment, the strains previously isolated in mesopelagic waters are able, in low numbers, to withstand the aphotic and oxygen depleted conditions of deep layers. This heterogeneity allows different Synechococcus phylotypes to occupy different niches and underscores the importance of a more detailed characterization of the abundance, distribution, and dynamics of individual populations of these picocyanobacteria.

3.
ISME J ; 13(7): 1676-1687, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30820035

RESUMEN

The Black Sea is the largest meromictic sea with a reservoir of anoxic water extending from 100 to 1000 m depth. These deeper layers are characterised by a poorly understood fluorescence signal called "deep red fluorescence", a chlorophyll a- (Chl a) like signal found in deep dark oceanic waters. In two cruises, we repeatedly found up to 103 cells ml-1 of picocyanobacteria at 750 m depth in these waters and isolated two phycoerythrin-rich Synechococcus sp. strains (BS55D and BS56D). Tests on BS56D revealed its high adaptability, involving the accumulation of Chl a in anoxic/dark conditions and its capacity to photosynthesise when re-exposed to light. Whole-genome sequencing of the two strains showed the presence of genes that confirms the putative ability of our strains to survive in harsh mesopelagic environments. This discovery provides new evidence to support early speculations associating the "deep red fluorescence" signal to viable picocyanobacteria populations in the deep oxygen-depleted oceans, suggesting a reconsideration of the ecological role of a viable stock of Synechococcus in dark deep waters.


Asunto(s)
Synechococcus/química , Synechococcus/aislamiento & purificación , Mar Negro , Clorofila A/metabolismo , Ecosistema , Fluorescencia , Genoma Bacteriano , Océanos y Mares , Fotosíntesis , Ficoeritrina/metabolismo , Filogenia , Synechococcus/clasificación , Synechococcus/metabolismo
4.
Environ Sci Pollut Res Int ; 22(23): 19013-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26233742

RESUMEN

A growing concern exists about the effects of chloride (Cl) on freshwater systems. Increasing Cl concentrations have been observed in the last few decades in several rivers and lakes, mainly in northern countries. In Italy, present levels and temporal changes of sodium (Na) and Cl in water bodies have rarely been assessed. Based on long-term data for the lakes of the subalpine district in Italy (Maggiore, Lugano, Como, Iseo, Garda), we analyzed trends affecting Cl and Na concentrations during the last 25 years, with the aim of identifying temporal changes and assessing possible causes. An in-depth analysis is presented for Lake Maggiore. Positive temporal Na and Cl trends were evident in all studied lakes, with the trends increasing since early 2000s. Data for Lake Maggiore tributaries showed a clear seasonality (higher values in winter and early spring). The NaCl used as road de-icing agent, together with Cl discharge from wastewater treatment plants, were identified as the main causes for the observed trends. Chloride concentrations in the lakes are below the threshold limit for reduced water quality and below concentrations known to harm aquatic biota. However, considering the relevance of deep subalpine lakes, representing almost 80% of the total freshwater volume in Italy, these trends indicate an important chemical change, which warrants further analysis.


Asunto(s)
Cloruros/análisis , Lagos/química , Sodio/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Italia , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA