Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Vis Exp ; (205)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38619239

RESUMEN

The pathophysiology of heart failure with preserved ejection fraction (HFpEF) driven by lipotoxicity is incompletely understood. Given the urgent need for animal models that accurately mimic cardio-metabolic HFpEF, a hyperlipidemia-induced murine model was developed by reverse engineering phenotypes seen in HFpEF patients. This model aimed to investigate HFpEF, focusing on the interplay between lipotoxicity and metabolic syndrome. Hyperlipidemia was induced in wild-type (WT) mice on a 129J strain background through bi-weekly intraperitoneal injections of poloxamer-407 (P-407), a block co-polymer that blocks lipoprotein lipase, combined with a single intravenous injection of adeno-associated virus 9-cardiac troponin T-low-density lipoprotein receptor (AAV9-cTnT-LDLR). Extensive assessments were conducted between 4 and 8 weeks post-treatment, including echocardiography, blood pressure recording, whole-body plethysmography, echocardiography (ECG) telemetry, activity wheel monitoring (AWM), and biochemical and histological analyses. The LDLR/P-407 mice exhibited distinctive features at four weeks, including diastolic dysfunction, preserved ejection fraction, and increased left ventricular wall thickness. Notably, blood pressure and renal function remained within normal ranges. Additionally, ECG and AWM revealed heart blocks and reduced activity, respectively. Diastolic function deteriorated at eight weeks, accompanied by a significant decline in respiratory rates. Further investigation into the double treatment model revealed elevated fibrosis, wet/dry lung ratios, and heart weight/body weight ratios. The LDLR/P-407 mice exhibited xanthelasmas, ascites, and cardiac ischemia. Interestingly, sudden deaths occurred between 6 and 12 weeks post-treatment. The murine HFpEF model offers a valuable and promising experimental resource for elucidating the intricacies of metabolic syndrome contributing to diastolic dysfunction within the context of lipotoxicity-mediated HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Hiperlipidemias , Síndrome Metabólico , Humanos , Animales , Ratones , Insuficiencia Cardíaca/etiología , Modelos Animales de Enfermedad , Volumen Sistólico
2.
JCI Insight ; 9(5)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300707

RESUMEN

Geleophysic dysplasia-1 (GD1) is an autosomal recessive disorder caused by ADAMTS-like 2 (ADAMTSL2) variants. It is characterized by distinctive facial features, limited joint mobility, short stature, brachydactyly, and life-threatening cardiorespiratory complications. The clinical spectrum spans from perinatal lethality to milder adult phenotypes. We developed and characterized cellular and mouse models, to replicate the genetic profile of a patient who is compound heterozygous for 2 ADAMTSL2 variants, namely p.R61H and p.A165T. The impairment of ADAMTSL2 secretion was observed in both variants, but p.A165T exhibited a more severe impact. Mice carrying different allelic combinations revealed a spectrum of phenotypic severity, from lethality in knockout homozygotes to mild growth impairment observed in adult p.R61H homozygotes. Homozygous and hemizygous p.A165T mice survived but displayed severe respiratory and cardiac dysfunction. The respiratory dysfunction mainly affected the expiration phase, and some of these animals had microscopic post-obstructive pneumonia. Echocardiograms and MRI studies revealed a significant systolic dysfunction, accompanied by a reduction of the aortic root size. Histology verified the presence of hypertrophic cardiomyopathy with myocyte hypertrophy, chondroid metaplasia, and mild interstitial fibrosis. This study revealed a substantial correlation between the degree of impaired ADAMTSL2 secretion and the severity of the observed phenotype in GD1.


Asunto(s)
Proteínas ADAMTS , Enfermedades del Desarrollo Óseo , Deformidades Congénitas de las Extremidades , Adulto , Humanos , Animales , Ratones , Proteínas ADAMTS/genética , Enfermedades del Desarrollo Óseo/genética , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA