Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
FASEB J ; 37(1): e22708, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562544

RESUMEN

Inflammatory bowel disease (IBD) is a chronic persistent intestinal disorder, with ulcerative colitis and Crohn's disease being the most common. However, the physio-pathological development of IBD is still unknown. Therefore, research on the etiology and treatment of IBD has been conducted using a variety of approaches. Short-chain fatty acids such as 3-hydroxybutyrate (3-HB) are known to have various physiological activities. In particular, the production of 3-HB by the intestinal microflora is associated with the suppression of various inflammatory diseases. In this study, we investigated whether poly-D-3-hydroxybutyric acid (PHB), a polyester of 3-HB, is degraded by intestinal microbiota and works as a slow-release agent of 3-HB. Further, we examined whether PHB suppresses the pathogenesis of IBD models. As long as a PHB diet increased 3-HB concentrations in the feces and blood, PHB suppressed weight loss and histological inflammation in a dextran sulfate sodium-induced IBD model. Furthermore, PHB increased the accumulation of regulatory T cells in the rectum without affecting T cells in the spleen. These results indicate that PHB has potential applications in treating diseases related to the intestinal microbiota as a sustained 3-HB donor. We show for the first time that biodegradable polyester exhibits intestinal bacteria-mediated bioactivity toward IBD. The use of bioplastics, which are essential materials for sustainable social development, represents a novel approach to diseases related to dysbiosis, including IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Linfocitos T Reguladores , Humanos , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Linfocitos T Reguladores/metabolismo , Regulación hacia Arriba , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Hidroxibutiratos/farmacología , Poliésteres
2.
Biosci Biotechnol Biochem ; 87(9): 946-953, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37280167

RESUMEN

Bovine leukemia virus (BLV) causes enzootic bovine leukosis, a fatal cattle disease that leads to significant economic losses in the livestock industry. Currently, no effective BLV countermeasures exist, except testing and culling. In this study, we developed a high-throughput fluorogenic assay to evaluate the inhibitory activity of various compounds on BLV protease, an essential enzyme for viral replication. The developed assay method was used to screen a chemical library, and mitorubrinic acid was identified as a BLV protease inhibitor that exhibited stronger inhibitory activity than amprenavir. Additionally, the anti-BLV activity of both compounds was evaluated using a cell-based assay, and mitorubrinic acid was found to exhibit inhibitory activity without cytotoxicity. This study presents the first report of a natural inhibitor of BLV protease-mitorubrinic acid-a potential candidate for the development of anti-BLV drugs. The developed method can be used for high-throughput screening of large-scale chemical libraries.


Asunto(s)
Virus de la Leucemia Bovina , Péptido Hidrolasas , Animales , Bovinos , Virus de la Leucemia Bovina/química , Replicación Viral
3.
Chem Pharm Bull (Tokyo) ; 71(8): 650-654, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245988

RESUMEN

Although aryl hydrocarbon receptors (AhRs) are related to the metabolic pathway of xenobiotics, recent studies have revealed that this receptor is also associated with the life cycle of viruses and inflammatory reactions. For example, flutamide, used to treat prostate cancer, inhibits hepatitis C virus proliferation by acting as an AhR antagonist, and methylated-pelargonidin, an AhR agonist, suppresses pro-inflammatory cytokine production. To discover a novel class of AhR ligands, we screened 1000 compounds derived from fungal metabolites using a reporter assay and identified methylsulochrin as a partial agonist of the aryl hydrocarbon receptor. Methylsulochrin was found to inhibit the production of hepatitis C virus (HCV) in Huh-7.5.1 cells. Methylsulochrin also suppressed the production of interleukin-6 in RAW264.7 cells. Furthermore, a preliminary structure-activity relationship study using sulochrin derivatives was performed. Our findings suggest the use of methylsulochrin derivatives as anti-HCV compounds with anti-inflammatory activity.


Asunto(s)
Antivirales , Receptores de Hidrocarburo de Aril , Masculino , Humanos , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo , Antivirales/farmacología , Flutamida/farmacología , Antiinflamatorios/farmacología , Ligandos
4.
Chem Pharm Bull (Tokyo) ; 71(11): 843-845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37914261

RESUMEN

Juglorubin is a natural dye isolated from the culture of Streptomyces sp. 3094, 815, and GW4184. It has been previously synthesized via the biomimetic dimerization of juglomycin C, a plausible genetic precursor. In this study, the derivatives of juglorubin, 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester, were found to exhibit antiviral activity against hepatitis C virus (HCV) without exerting any remarkable cytotoxicity against host Huh-7 cells. They also inhibited liver X receptor α activation and lipid droplet accumulation in Huh-7 cells. These findings suggest that 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester targeted the host factors required for HCV production.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Línea Celular , Ésteres , Replicación Viral , Antivirales/farmacología
5.
J Nat Prod ; 85(1): 284-291, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34967639

RESUMEN

We have previously reported that neoechinulin B (1a), a prenylated indole diketopiperazine alkaloid, shows antiviral activities against hepatitis C virus (HCV) via the inactivation of the liver X receptors (LXRs) and the resultant disruption of double-membrane vesicles. In this study, a two-step synthesis of the diketopiperazine scaffold of 1a was achieved by the base-induced coupling of 1,4-diacetyl-3-{[(tert-butyldimethylsilyl)oxy]methyl}piperazine-2,5-dione with aldehydes, followed by the treatment of the resultant coupling products with tetra-n-butylammonium fluoride. Compound 1a and its 16 derivatives 1b-q were prepared using this method. Furthermore, variecolorin H, a related alkaloid, was obtained by the acid treatment of 1a in MeOH. The antiviral evaluation of 1a and its derivatives revealed that 1a, 1c, 1d, 1h, 1j, 1l, and 1o exhibited both anti-HCV and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities. The results of this study indicate that the exomethylene moiety on the diketopiperazine ring is important for the antiviral activities. The antiviral compounds can inhibit the production of HCV and SARS-CoV-2 by inactivating LXRs.


Asunto(s)
Alcaloides/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Piperazinas/farmacología , SARS-CoV-2/efectos de los fármacos , Alcaloides/síntesis química , Alcaloides/química , Antivirales/síntesis química , Antivirales/química , Línea Celular Tumoral , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Humanos , Receptores X del Hígado/antagonistas & inhibidores , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
6.
Biol Pharm Bull ; 45(4): 517-521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370277

RESUMEN

Malignant meningioma has a poor prognosis and there are currently no effective therapies. Avenaciolide is water-insoluble natural organic product produced by Aspergillus avenaceus G. Smith that can inhibit mitochondrial function. In the present study, we investigated the anti-cancer effects of avenaciolide in an isolated human malignant meningioma cell line, HKBMM. In addition, to assess the specificity of avenaciolide, its effects on normal human neonatal dermal fibroblast HDFn cells were also examined. Avenaciolide showed effective anti-cancer activity, and its cytotoxicity in HKBMM cells was greater than that in HDFn cells. The anti-cancer effects of avenaciolide were mediated by reactive oxygen species (ROS)-induced apoptosis, which may have been caused by mitochondrial disfunction. These results suggest that avenaciolide has potential as a therapeutic drug for malignant meningioma.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Apoptosis , Humanos , Recién Nacido , Lactonas , Meningioma/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
7.
Chem Pharm Bull (Tokyo) ; 70(10): 679-683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184450

RESUMEN

The liver X receptor is a nuclear hormone receptor that regulates lipid metabolism. Previously, we had demonstrated the antiviral properties of a liver X receptor antagonist associated with the hepatitis C virus and severe acute respiratory syndrome coronavirus 2. In this study, we screened a chemical library and identified two potential liver X receptor antagonists. Spectroscopic analysis revealed that the structures of both antagonists (compounds 1 and 2) were cyclic dimer and trimer of esters, respectively, that consisted of phthalate and 1,6-hexane diol. This study is the first to report the structure of the cyclic trimer of phthalate ester. Further experiments revealed that the compounds were impurities of solvents used for purification, although their source could not be traced. Both phthalate esters exhibited anti-hepatitis C virus activity, whereas the cyclic dimer showed anti-severe acute respiratory syndrome coronavirus 2 activity. Cyclic phthalate derivatives may constitute a novel class of liver X receptor antagonists and broad-spectrum antivirals.


Asunto(s)
COVID-19 , Ésteres , Antivirales/farmacología , Ésteres/farmacología , Hepacivirus , Hexanos , Humanos , Receptores X del Hígado , Ácidos Ftálicos , Receptores Citoplasmáticos y Nucleares , SARS-CoV-2 , Solventes
8.
Biosci Biotechnol Biochem ; 85(1): 85-91, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577659

RESUMEN

Sulfoglycolipid, SQAP, is a radiosensitizing agent that makes tumor cells more sensitive to radiation therapy. A previous study revealed that SQAP induced the degradation of hypoxia-inducible factor-1α (HIF-1α) and inhibited angiogenesis in a hepatoma model mouse. Herein, we examined the biological activities of SQAP against hepatocarcinoma cells under low oxygen conditions. Cell growth inhibition of SQAP under hypoxic conditions was significantly higher than that under normoxic conditions. In addition, SQAP was found to impair the expression of histone deacetylase (HDAC) under low oxygen conditions. Our present data suggested that SQAP induced the degradation of HIF-1α and then decreased the expression of HDAC1. Unlike known HDAC inhibitors, SQAP increased the acetylation level of histone in cells without inhibition of enzymatic activity of HDACs. Our data demonstrated hypoxia-specific unique properties of SQAP.


Asunto(s)
Muerte Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucolípidos/química , Glucolípidos/farmacología , Histona Desacetilasa 1/metabolismo , Hipoxia Tumoral/efectos de los fármacos , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Histonas/metabolismo , Humanos
9.
J Biol Chem ; 294(19): 7942-7965, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30926603

RESUMEN

endo-ß-1,2-Glucanase (SGL) is an enzyme that hydrolyzes ß-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic ß-1,2-glucans to sophorose (Glc-ß-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified ß-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a ß-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of ß-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.


Asunto(s)
Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Microbiología del Suelo , Talaromyces/enzimología , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Biosci Biotechnol Biochem ; 84(2): 217-227, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31589093

RESUMEN

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) and 4'-ethynyl-2'-deoxyadenosine (EdA) are nucleoside analogues which inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. EdAP, a cyclosaligenyl (cycloSal) phosphate derivative of EdA, inhibits the replication of the influenza A virus. The common structural feature of these compounds is the ethynyl group at the 4'-position. In this study, these nucleoside analogues were prepared by a common synthetic strategy starting from the known 1,2-di-O-acetyl-D-ribofuranose. Biological evaluation of EdAP revealed that this compound reduced hepatitis B virus (HBV) replication dose-dependently without cytotoxicity against host cells tested in this study.


Asunto(s)
Antivirales/síntesis química , Nucleótidos de Desoxiadenina/síntesis química , Desoxiadenosinas/síntesis química , Virus de la Hepatitis B/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Línea Celular , Nucleótidos de Desoxiadenina/farmacología , Desoxiadenosinas/farmacología , Virus de la Hepatitis B/fisiología , Humanos
11.
J Biol Chem ; 293(51): 19559-19571, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30381393

RESUMEN

Viruses hijack and modify host cell functions to maximize viral proliferation. Hepatitis C virus (HCV) reorganizes host cell metabolism to produce specialized membrane structures and to modify organelles such as double-membrane vesicles and enlarged lipid droplets (LDs), thereby enabling virus replication and assembly. However, the molecular bases of these host-HCV interactions are largely unknown. Here, using a chemical screen, we demonstrate that the benzamide derivative flutamide reduces the host capacity to produce infectious HCV. Flutamide disrupted the formation of enlarged LDs in HCV-infected cells, thereby abolishing HCV assembly. We also report that aryl hydrocarbon receptor (AhR), a known flutamide target, plays a key role in mediating LD accumulation and HCV production. This AhR function in lipid production was also observed in HCV-uninfected Huh-7 cells and primary human hepatocytes, suggesting that AhR signaling regulates lipid accumulation independently of HCV infection. We further observed that a downstream activity, that of cytochrome P450 1A1 (CYP1A1), was the primary regulator of AhR-mediated lipid production. Specifically, blockade of AhR-induced CYP1A1 up-regulation counteracted LD overproduction, and overproduction of CYP1A1, but not of CYP1B1, in AhR-inactivated cells restored lipid accumulation. Of note, HCV infection up-regulated the AhR-CYP1A1 pathway, resulting in the accumulation of enlarged LDs. In conclusion, we demonstrate that the AhR-CYP1A1 pathway has a significant role in lipid accumulation, a hallmark of HCV infection that maximizes progeny virus production. Our chemical-genetic analysis reveals a new strategy and lead compounds to control hepatic lipid accumulation as well as HCV infection.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Hepacivirus/fisiología , Metabolismo de los Lípidos , Receptores de Hidrocarburo de Aril/metabolismo , Ensamble de Virus , Línea Celular , Flutamida/farmacología , Hepacivirus/efectos de los fármacos , Humanos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Unión Proteica , Ensamble de Virus/efectos de los fármacos
12.
Bioorg Med Chem ; 27(23): 115149, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31679979

RESUMEN

Pyrenocine A, a phytotoxin, was found to exhibit cytotoxicity against cancer cells with an IC50 value of 2.6-12.9 µM. Live cell imaging analysis revealed that pyrenocine A arrested HeLa cells at the M phase with characteristic ring-shaped chromosomes. Furthermore, as a result of immunofluorescence staining analysis, we found that pyrenocine A resulted in the formation of monopolar spindles in HeLa cells. Monopolar spindles are known to be induced by inhibitors of the kinesin motor protein Eg5 such as monastrol and STLC. Monastrol and STLC induce monopolar spindle formation and M phase arrest via inhibition of the ATPase activity of Eg5. Interestingly, our data revealed that pyrenocine A had no effect on the ATPase activity of Eg5 in vitro, which suggested the compound induces a monopolar spindle by an unknown mechanism. Structure-activity relationship analysis indicates that the enone structure of pyrenocine A is likely to be important for its cytotoxicity. An alkyne-tagged analog of pyrenocine A was synthesized and suppressed proliferation of HeLa cells with an IC50 value of 2.3 µM. We concluded that pyrenocine A induced monopolar spindle formation by a novel mechanism other than direct inhibition of Eg5 motor activity, and the activity of pyrenocine A may suggest a new anticancer mechanism.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Pirimidinas/farmacología , Pironas/farmacología , Tionas/farmacología
13.
Xenobiotica ; 49(3): 346-362, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29543539

RESUMEN

Sulfoquinovosylacylpropanediol (SQAP) is a novel potent radiosensitizer that inhibits angiogenesis in vivo and results in increased oxigenation and reduced tumor volume. We investigated the distribution, metabolism, and excretion of SQAP in male KSN-nude mice transplanted with a human pulmonary carcinoma, Lu65. For the metabolism analysis, a 2 mg (2.98 MBq)/kg of [glucose-U-14C]-SQAP (CP-3839) was intravenously injected. The injected SQAP was decomposed into a stearic acid and a sulfoquinovosylpropanediol (SQP) in the body. The degradation was relatively slow in the carcinoma tissue.1,3-propanediol[1-14C]-SQAP (CP-3635) was administered through intravenous injection of a 1 mg (3.48 MBq)/kg dose followed by whole body autoradiography of the mice. The autoradiography analysis demonstrated that SQAP rapidly distributed throughout the whole body and then quickly decreased within 4 hours except the tumor and excretion organs such as liver, kidney. Retention of SQAP was longer in tumor parts than in other tissues, as indicated by higher levels of radioactivity at 4 hours. The radioactivity around the tumor had also completely disappeared within 72 hours.


Asunto(s)
Glucolípidos/farmacocinética , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Administración Intravenosa , Animales , Autorradiografía , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Glucolípidos/administración & dosificación , Glucolípidos/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Desnudos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Espectrometría de Masas en Tándem
14.
Molecules ; 24(14)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319565

RESUMEN

Influenza A viruses leading to infectious respiratory diseases cause seasonal epidemics and sometimes periodic global pandemics. Viral polymerase is an attractive target in inhibiting viral replication, and 4'-ethynyladenosine, which has been reported as a highly potent anti-human immunodeficiency virus (HIV) nucleoside derivative, can work as an anti-influenza agent. Herein, we designed and synthesized a 4'-ethynyl-2'-deoxyadenosine 5'-monophosphate analog called EdAP (5). EdAP exhibited potent inhibition against influenza virus multiplication in Madin-Darby canine kidney (MDCK) cells transfected with human α2-6-sialyltransferase (SIAT1) cDNA and did not show any toxicity toward the cells. Surprisingly, this DNA-type nucleic acid analog (5) inhibited the multiplication of influenza A virus, although influenza virus is an RNA virus that does not generate DNA.


Asunto(s)
Antivirales/farmacología , Nucleótidos de Desoxiadenina/farmacología , Desoxiadenosinas/síntesis química , Gripe Humana/tratamiento farmacológico , Animales , Antivirales/síntesis química , Antivirales/química , Nucleótidos de Desoxiadenina/síntesis química , Nucleótidos de Desoxiadenina/química , Desoxiadenosinas/química , Desoxiadenosinas/farmacología , Perros , Células HEK293 , Humanos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Replicación Viral/efectos de los fármacos
15.
J Biol Chem ; 292(18): 7487-7506, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28270506

RESUMEN

ß-1,2-Glucan is an extracellular cyclic or linear polysaccharide from Gram-negative bacteria, with important roles in infection and symbiosis. Despite ß-1,2-glucan's importance in bacterial persistence and pathogenesis, only a few reports exist on enzymes acting on both cyclic and linear ß-1,2-glucan. To this end, we purified an endo-ß-1,2-glucanase to homogeneity from cell extracts of the environmental species Chitinophaga arvensicola, and an endo-ß-1,2-glucanase candidate gene (Cpin_6279) was cloned from the related species Chitinophaga pinensis The Cpin_6279 protein specifically hydrolyzed linear ß-1,2-glucan with polymerization degrees of ≥5 and a cyclic counterpart, indicating that Cpin_6279 is an endo-ß-1,2-glucananase. Stereochemical analysis demonstrated that the Cpin_6279-catalyzed reaction proceeds via an inverting mechanism. Cpin_6279 exhibited no significant sequence similarity with known glycoside hydrolases (GHs), and thus the enzyme defines a novel GH family, GH144. The crystal structures of the ligand-free and complex forms of Cpin_6279 with glucose (Glc) and sophorotriose (Glc-ß-1,2-Glc-ß-1,2-Glc) determined up to 1.7 Å revealed that it has a large cavity appropriate for polysaccharide degradation and adopts an (α/α)6-fold slightly similar to that of GH family 15 and 8 enzymes. Mutational analysis indicated that some of the highly conserved acidic residues in the active site are important for catalysis, and the Cpin_6279 active-site architecture provided insights into the substrate recognition by the enzyme. The biochemical characterization and crystal structure of this novel GH may enable discovery of other ß-1,2-glucanases and represent a critical advance toward elucidating structure-function relationships of GH enzymes.


Asunto(s)
Proteínas Bacterianas/química , Bacteroidetes/enzimología , Celulasa/química , Proteínas Bacterianas/aislamiento & purificación , Catálisis , Dominio Catalítico , Celulasa/aislamiento & purificación , Cristalografía por Rayos X
16.
Biosci Biotechnol Biochem ; 82(3): 442-448, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29447077

RESUMEN

Neoechinulin A is an indole alkaloid with several biological activities. We previously reported that this compound protects neuronal PC12 cells from cytotoxicity induced by the peroxynitrite generator 3-morpholinosydnonimine (SIN-1), but the target proteins and precise mechanism of action of neoechinulin A were unclear. Here, we employed a phage display screen to identify proteins that bind directly with neoechinulin A. Our findings identified two proteins, chromogranin B and glutaredoxin 3, as candidate target binding partners for the alkaloid. QCM analyses revealed that neoechinulin A displays high affinity for both chromogranin B and glutaredoxin 3. RNA interference-mediated depletion of chromogranin B decreased the sensitivity of PC12 cells against SIN-1. Our results suggested chromogranin B is a plausible target of neoechinulin A.


Asunto(s)
Cromogranina B/metabolismo , Glutarredoxinas/metabolismo , Alcaloides Indólicos/metabolismo , Fármacos Neuroprotectores/metabolismo , Biblioteca de Péptidos , Piperazinas/metabolismo , Animales , Cromogranina B/deficiencia , Cromogranina B/genética , Silenciador del Gen , Glutarredoxinas/deficiencia , Glutarredoxinas/genética , Alcaloides Indólicos/farmacología , Fármacos Neuroprotectores/farmacología , Células PC12 , Piperazinas/farmacología , Unión Proteica , Ratas
17.
J Virol ; 90(20): 9058-74, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27489280

RESUMEN

UNLABELLED: Cell culture systems reproducing virus replication can serve as unique models for the discovery of novel bioactive molecules. Here, using a hepatitis C virus (HCV) cell culture system, we identified neoechinulin B (NeoB), a fungus-derived compound, as an inhibitor of the liver X receptor (LXR). NeoB was initially identified by chemical screening as a compound that impeded the production of infectious HCV. Genome-wide transcriptome analysis and reporter assays revealed that NeoB specifically inhibits LXR-mediated transcription. NeoB was also shown to interact directly with LXRs. Analysis of structural analogs suggested that the molecular interaction of NeoB with LXR correlated with the capacity to inactivate LXR-mediated transcription and to modulate lipid metabolism in hepatocytes. Our data strongly suggested that NeoB is a novel LXR antagonist. Analysis using NeoB as a bioprobe revealed that LXRs support HCV replication: LXR inactivation resulted in dispersion of double-membrane vesicles, putative viral replication sites. Indeed, cells treated with NeoB showed decreased replicative permissiveness for poliovirus, which also replicates in double-membrane vesicles, but not for dengue virus, which replicates via a distinct membrane compartment. Together, our data suggest that LXR-mediated transcription regulates the formation of virus-associated membrane compartments. Significantly, inhibition of LXRs by NeoB enhanced the activity of all known classes of anti-HCV agents, and NeoB showed especially strong synergy when combined with interferon or an HCV NS5A inhibitor. Thus, our chemical genetics analysis demonstrates the utility of the HCV cell culture system for identifying novel bioactive molecules and characterizing the virus-host interaction machinery. IMPORTANCE: Hepatitis C virus (HCV) is highly dependent on host factors for efficient replication. In the present study, we used an HCV cell culture system to screen an uncharacterized chemical library. Our results identified neoechinulin B (NeoB) as a novel inhibitor of the liver X receptor (LXR). NeoB inhibited the induction of LXR-regulated genes and altered lipid metabolism. Intriguingly, our results indicated that LXRs are critical to the process of HCV replication: LXR inactivation by NeoB disrupted double-membrane vesicles, putative sites of viral replication. Moreover, NeoB augmented the antiviral activity of all known classes of currently approved anti-HCV agents without increasing cytotoxicity. Thus, our strategy directly links the identification of novel bioactive compounds to basic virology and the development of new antiviral agents.


Asunto(s)
Alcaloides/metabolismo , Antivirales/metabolismo , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Hongos/química , Hepacivirus/efectos de los fármacos , Receptores X del Hígado/antagonistas & inhibidores , Piperazinas/metabolismo , Alcaloides/aislamiento & purificación , Antivirales/aislamiento & purificación , Técnicas de Cultivo de Célula , Línea Celular , Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , Sinergismo Farmacológico , Hepacivirus/fisiología , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Piperazinas/aislamiento & purificación , Poliovirus/efectos de los fármacos , Poliovirus/fisiología , Unión Proteica , Replicación Viral/efectos de los fármacos
18.
J Virol ; 89(23): 11945-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26378168

RESUMEN

UNLABELLED: Anti-hepatitis B virus (HBV) drugs are currently limited to nucleos(t)ide analogs (NAs) and interferons. A challenge of drug development is the identification of small molecules that suppress HBV infection from new chemical sources. Here, from a fungus-derived secondary metabolite library, we identify a structurally novel tricyclic polyketide, named vanitaracin A, which specifically inhibits HBV infection. Vanitaracin A inhibited the viral entry process with a submicromolar 50% inhibitory concentration (IC50) (IC50 = 0.61 ± 0.23 µM), without evident cytotoxicity (50% cytotoxic concentration of >256 µM; selectivity index value of >419) in primary human hepatocytes. Vanitaracin A did not affect the HBV replication process. This compound was found to directly interact with the HBV entry receptor sodium taurocholate cotransporting polypeptide (NTCP) and impaired its bile acid transport activity. Consistent with this NTCP targeting, antiviral activity of vanitaracin A was observed with hepatitis D virus (HDV) but not hepatitis C virus. Importantly, vanitaracin A inhibited infection by all HBV genotypes tested (genotypes A to D) and clinically relevant NA-resistant HBV isolate. Thus, we identified a fungal metabolite, vanitaracin A, which was a potent, well-tolerated, and broadly active inhibitor of HBV and HDV entry. This compound, or its related analogs, could be part of an antiviral strategy for preventing reinfection with HBV, including clinically relevant nucleos(t)ide analog-resistant virus. IMPORTANCE: For achieving better treatment and prevention of hepatitis B virus (HBV) infection, anti-HBV agents targeting a new molecule are in great demand. Although sodium taurocholate cotransporting polypeptide (NTCP) has recently been reported to be an essential host factor for HBV entry, there is a limited number of reports that identify new compounds targeting NTCP and inhibiting HBV entry. Here, from an uncharacterized chemical library, we isolated a structurally new compound, named vanitaracin A, which inhibited the process of entry of HBV and hepatitis D virus (HDV). This compound was suggested to directly interact with NTCP and inhibit its transporter activity. Importantly, vanitaracin A inhibited the entry of all HBV genotypes examined and of a clinically relevant nucleos(t)ide analog-resistant HBV isolate.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis Delta/fisiología , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Policétidos/farmacología , Simportadores/metabolismo , Talaromyces/química , Internalización del Virus/efectos de los fármacos , Línea Celular , Cartilla de ADN/genética , Descubrimiento de Drogas/métodos , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Mediciones Luminiscentes , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie
19.
J Nat Prod ; 79(2): 442-6, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26848504

RESUMEN

New diazabicyclo[2.2.2]octane derivatives, peniciherquamides A-C (1-3), and a novel herqueinone derivative, neoherqueinone (5), were isolated from a fungal culture broth of Penicillium herquei. The structures of these novel compounds were determined by interpretation of spectroscopic data (1D/2D NMR, MS, and IR). Four known compounds, preparaherquamide (4), peniciherqueinone (6), and herqueinone/isoherqueinone (7/7a), were also obtained. The isolated compounds were tested for anti-hepatitis C virus (HCV) activity, and peniciherquamide C (3) was found to display an IC50 value of 5.1 µM. To our knowledge, this is the first report of a diazabicyclo[2.2.2]octane derivative with anti-HCV activity.


Asunto(s)
Antivirales/aislamiento & purificación , Antivirales/farmacología , Compuestos Aza/aislamiento & purificación , Compuestos Aza/farmacología , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Ciclooctanos/aislamiento & purificación , Ciclooctanos/farmacología , Hepacivirus/efectos de los fármacos , Penicillium/química , Antivirales/química , Compuestos Aza/química , Productos Biológicos/química , Ciclooctanos/química , Estructura Molecular
20.
Eur J Immunol ; 44(11): 3220-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25196058

RESUMEN

While the presentation mechanism of antigenic peptides derived from exogenous proteins by MHC class II molecules is well understood, relatively little is known about the presentation mechanism of endogenous MHC class II-restricted antigens. We therefore screened a chemical library of 200 compounds derived from natural products to identify inhibitors of the presentation of endogenous MHC class II-restricted antigens. We found that pyrenocine B, a compound derived from the fungus Pyrenochaeta terrestris, inhibits presentation of endogenous MHC class II-restricted minor histocompatibility antigen IL-4 inducible gene 1 (IL4I1) by primary dendritic cells (DCs). Phage display screening and surface plasmon resonance (SPR) analysis were used to investigate the mechanism of suppressive action by pyrenocine B. EpsinR, a target molecule for pyrenocine B, mediates endosomal trafficking through binding of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Lentiviral-mediated short hairpin (sh) RNA downregulation of EpsinR expression in DCs resulted in a decrease in the responsiveness of CD4+ T cells. Our data thus suggest that EpsinR plays a role in antigen presentation, which provides insight into the mechanism of presentation pathway of endogenous MHC class II-restricted antigen.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Presentación de Antígeno/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/inmunología , Proteínas Adaptadoras del Transporte Vesicular/antagonistas & inhibidores , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Técnicas de Visualización de Superficie Celular , Células Dendríticas/inmunología , Flavoproteínas/antagonistas & inhibidores , Flavoproteínas/biosíntesis , Proteínas Fúngicas/farmacología , L-Aminoácido Oxidasa , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Pironas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Proteínas SNARE/inmunología , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA