Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant J ; 111(5): 1252-1266, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779281

RESUMEN

Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.


Asunto(s)
Lupinus , Australia , Cromosomas , Genómica , Humanos , Lupinus/genética , Fitomejoramiento
2.
BMC Genomics ; 24(1): 582, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784009

RESUMEN

BACKGROUND: Several phytopathogens produce small non-coding RNAs of approximately 18-30 nucleotides (nt) which post-transcriptionally regulate gene expression. Commonly called small RNAs (sRNAs), these small molecules were also reported to be present in the necrotrophic pathogen Sclerotinia sclerotiorum. S. sclerotiorum causes diseases in more than 400 plant species, including the important oilseed crop Brassica napus. sRNAs can further be classified as microRNAs (miRNAs) and short interfering RNAs (siRNAs). Certain miRNAs can activate loci that produce further sRNAs; these secondary sRNA-producing loci are called 'phased siRNA' (PHAS) loci and have only been described in plants. To date, very few studies have characterized sRNAs and their endogenous targets in S. sclerotiorum. RESULTS: We used Illumina sequencing to characterize sRNAs from fungal mycelial mats of S. sclerotiorum spread over B. napus leaves. In total, eight sRNA libraries were prepared from in vitro, 12 h post-inoculation (HPI), and 24 HPI mycelial mat samples. Cluster analysis identified 354 abundant sRNA clusters with reads of more than 100 Reads Per Million (RPM). Differential expression analysis revealed upregulation of 34 and 57 loci at 12 and 24 HPI, respectively, in comparison to in vitro samples. Among these, 25 loci were commonly upregulated. Altogether, 343 endogenous targets were identified from the major RNAs of 25 loci. Almost 88% of these targets were annotated as repeat element genes, while the remaining targets were non-repeat element genes. Fungal degradome reads confirmed cleavage of two transposable elements by one upregulated sRNA. Altogether, 24 milRNA loci were predicted with both mature and milRNA* (star) sequences; these are both criteria associated previously with experimentally verified miRNAs. Degradome sequencing data confirmed the cleavage of 14 targets. These targets were related to repeat element genes, phosphate acetyltransferases, RNA-binding factor, and exchange factor. A PHAS gene prediction tool identified 26 possible phased interfering loci with 147 phasiRNAs from the S. sclerotiorum genome, suggesting this pathogen might produce sRNAs that function similarly to miRNAs in higher eukaryotes. CONCLUSIONS: Our results provide new insights into sRNA populations and add a new resource for the study of sRNAs in S. sclerotiorum.


Asunto(s)
Ascomicetos , Brassica napus , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas
3.
Phytopathology ; 113(5): 800-811, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36880794

RESUMEN

Canola (Brassica napus) yield can be significantly reduced by the disease sclerotinia stem rot (SSR), which is caused by Sclerotinia sclerotiorum, a necrotrophic fungal pathogen with an unusually large host range. Breeding cultivars that are physiologically resistant to SSR is desirable to enhance crop productivity. However, the development of resistant varieties has proved challenging due to the highly polygenic nature of S. sclerotiorum resistance. Here, we identified regions of the B. napus genome associated with SSR resistance using data from a previous study by association mapping. We then validated their contribution to resistance in a follow-up screen. This follow-up screen also confirmed high levels of SSR resistance in several genotypes from the previous study. Using publicly available whole genome sequencing data for a panel of 83 B. napus genotypes, we identified nonsynonymous polymorphisms linked to the SSR resistance loci. A qPCR analysis showed that two of the genes containing these polymorphisms were transcriptionally responsive to S. sclerotiorum infection. In addition, we provide evidence that homologues of three of the candidate genes contribute to resistance in the model Brassicaceae species Arabidopsis thaliana. The identification of resistant germplasm and candidate genomic loci associated with resistance are important findings that can be exploited by breeders to improve the genetic resistance of canola varieties.


Asunto(s)
Ascomicetos , Brassica napus , Brassica napus/genética , Brassica napus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Ascomicetos/fisiología , Polimorfismo Genético , Resistencia a la Enfermedad/genética
4.
Phytopathology ; 113(2): 265-276, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35984372

RESUMEN

Ascochyta blight is a damaging disease that affects the stems, leaves, and pods of field pea (Pisum sativum) and impacts yield and grain quality. In Australia, field pea Ascochyta blight is primarily caused by the necrotrophic fungal species Peyronellaea pinodes and Ascochyta koolunga. In this study, we screened 1,276 Pisum spp. germplasm accessions in seedling disease assays with a mix of three isolates of P. pinodes and 641 accessions with three mixed isolates of A. koolunga (513 accessions were screened with both species). A selection of three P. sativum accessions with low disease scores for either pathogen, or in some cases both, were crossed with Australian field pea varieties PBA Gunyah and PBA Oura, and recombinant inbred line populations were made. Populations at the F3:4 and F4:5 generation were phenotyped for their disease response to P. pinodes and A. koolunga, and genotypes were determined using the diversity arrays technology genotyping method. Marker-trait associations were identified using a genome-wide association study approach. Trait-associated loci were mapped to the published P. sativum genome assembly, and candidate resistance gene analogues were identified in the corresponding genomic regions. One locus on chromosome 2 (LG1) was associated with resistance to P. pinodes, and the 8 Mb genomic region contains 156 genes, two of which are serine/threonine protein kinases, putatively contributing to the resistance trait. A second locus on chromosome 5 (LG3) was associated with resistance to A. koolunga, and the 35 Mb region contains 488 genes, of which five are potential candidate resistance genes, including protein kinases, a mitogen-activated protein kinase, and an ethylene-responsive protein kinase homolog.


Asunto(s)
Estudio de Asociación del Genoma Completo , Pisum sativum , Pisum sativum/genética , Pisum sativum/microbiología , Plantones/genética , Australia , Enfermedades de las Plantas/microbiología
5.
Phytopathology ; 113(8): 1515-1524, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36935379

RESUMEN

Ascochyta lentis, the causal organism of Ascochyta blight (AB) of lentil (Lens culinaris), has been shown to produce an avirulence effector protein that mediates AB resistance in certain lentil cultivars. The two known forms of the effector protein were identified from a biparental mapping population between isolates that have reciprocal virulence on 'PBA Hurricane XT' and 'Nipper'. The effector AlAvr1-1 was described for the PBA Hurricane XT-avirulent isolate P94-24 and AlAvr1-2 characterized in the PBA Hurricane XT-virulent isolate AlKewell. Here, we performed a genome-wide association study to identify other loci associated with AB for a differential set of lentil cultivars from a diverse panel of isolates collected in the Australian lentil-growing regions from 2013 to 2020. The chromosome 3 AlAvr1 locus was strongly associated with the PBA Hurricane XT, 'Indianhead', and Nipper disease responses, but one other genomic region on chromosome 11 was also associated with the Nipper disease trait. Our results corroborate earlier work that identified the AlAvr1 locus for field-collected isolates that span the period before release and after widespread adoption of PBA Hurricane XT. A multiplex PCR assay was developed to differentiate the genes AlAvr1-1 and AlAvr1-2 to predict PBA Hurricane XT avirulence and pathotype designation in the diversity panel. Increasing numbers of the PBA Hurricane XT-virulent pathotype 2 isolates across that time indicate strong selection for isolates with the AlAvr1-2 allele. Furthermore, one other region of the A. lentis genome may contribute to the pathogen-host interaction for lentil AB.

6.
BMC Genomics ; 22(1): 333, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964897

RESUMEN

BACKGROUND: Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR), is a host generalist necrotrophic fungus that can cause major yield losses in chickpea (Cicer arietinum) production. This study used RNA sequencing to conduct a time course transcriptional analysis of S. sclerotiorum gene expression during chickpea infection. It explores pathogenicity and developmental factors employed by S. sclerotiorum during interaction with chickpea. RESULTS: During infection of moderately resistant (PBA HatTrick) and highly susceptible chickpea (Kyabra) lines, 9491 and 10,487 S. sclerotiorum genes, respectively, were significantly differentially expressed relative to in vitro. Analysis of the upregulated genes revealed enrichment of Gene Ontology biological processes, such as oxidation-reduction process, metabolic process, carbohydrate metabolic process, response to stimulus, and signal transduction. Several gene functional categories were upregulated in planta, including carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, transcription factors and candidate secreted effectors. Differences in expression of four S. sclerotiorum genes on varieties with different levels of susceptibility were also observed. CONCLUSION: These findings provide a framework for a better understanding of S. sclerotiorum interactions with hosts of varying susceptibility levels. Here, we report for the first time on the S. sclerotiorum transcriptome during chickpea infection, which could be important for further studies on this pathogen's molecular biology.


Asunto(s)
Ascomicetos , Cicer , Ascomicetos/genética , Cicer/genética , Enfermedades de las Plantas/genética , Análisis de Secuencia de ARN
7.
BMC Plant Biol ; 21(1): 366, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380425

RESUMEN

BACKGROUND: Small RNAs are short non-coding RNAs that are key gene regulators controlling various biological processes in eukaryotes. Plants may regulate discrete sets of sRNAs in response to pathogen attack. Sclerotinia sclerotiorum is an economically important pathogen affecting hundreds of plant species, including the economically important oilseed B. napus. However, there are limited studies on how regulation of sRNAs occurs in the S. sclerotiorum and B. napus pathosystem. RESULTS: We identified different classes of sRNAs from B. napus using high throughput sequencing of replicated mock and infected samples at 24 h post-inoculation (HPI). Overall, 3999 sRNA loci were highly expressed, of which 730 were significantly upregulated during infection. These 730 up-regulated sRNAs targeted 64 genes, including disease resistance proteins and transcriptional regulators. A total of 73 conserved miRNA families were identified in our dataset. Degradome sequencing identified 2124 cleaved mRNA products from these miRNAs from combined mock and infected samples. Among these, 50 genes were specific to infection. Altogether, 20 conserved miRNAs were differentially expressed and 8 transcripts were cleaved by the differentially expressed miRNAs miR159, miR5139, and miR390, suggesting they may have a role in the S. sclerotiorum response. A miR1885-triggered disease resistance gene-derived secondary sRNA locus was also identified and verified with degradome sequencing. We also found further evidence for silencing of a plant immunity related ethylene response factor gene by a novel sRNA using 5'-RACE and RT-qPCR. CONCLUSIONS: The findings in this study expand the framework for understanding the molecular mechanisms of the S. sclerotiorum and B. napus pathosystem at the sRNA level.


Asunto(s)
Ascomicetos/fisiología , Brassica napus/genética , Brassica napus/microbiología , Enfermedades de las Plantas/microbiología , ARN de Planta , ARN Pequeño no Traducido , Secuencia Conservada , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Análisis de Secuencia de ARN , Regulación hacia Arriba
8.
Theor Appl Genet ; 134(10): 3411-3426, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34258645

RESUMEN

KEY MESSAGE: A plant-specific Trimethylguanosine Synthase1-like homologue was identified as a candidate gene for the efl mutation in narrow-leafed lupin, which alters phenology by reducing vernalisation requirement. The vernalisation pathway is a key component of flowering time control in plants from temperate regions but is not well understood in the legume family. Here we examined vernalisation control in the temperate grain legume species, narrow-leafed lupin (Lupinus angustifolius L.), and discovered a candidate gene for an ethylene imine mutation (efl). The efl mutation changes phenology from late to mid-season flowering and additionally causes transformation from obligate to facultative vernalisation requirement. The efl locus was mapped to pseudochromosome NLL-10 in a recombinant inbred line (RIL) mapping population developed by accelerated single seed descent. Candidate genes were identified in the reference genome, and a diverse panel of narrow-leafed lupins was screened to validate mutations specific to accessions with efl. A non-synonymous SNP mutation within an S-adenosyl-L-methionine-dependent methyltransferase protein domain of a Trimethylguanosine Synthase1-like (TGS1) orthologue was identified as the candidate mutation giving rise to efl. This mutation caused substitution of an amino acid within an established motif at a position that is otherwise highly conserved in several plant families and was perfectly correlated with the efl phenotype in F2 and F6 genetic population and a panel of diverse accessions, including the original efl mutant. Expression of the TGS1 homologue did not differ between wild-type and efl genotypes, supporting altered functional activity of the gene product. This is the first time a TGS1 orthologue has been associated with vernalisation response and flowering time control in any plant species.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genética de Población , Lupinus/crecimiento & desarrollo , Metiltransferasas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Flores/genética , Lupinus/genética , Metiltransferasas/genética , Mutación , Fenotipo , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/genética
9.
Phytopathology ; 111(2): 369-379, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32787627

RESUMEN

Chickpea production is constrained worldwide by the necrotrophic fungal pathogen Ascochyta rabiei, the causal agent of Ascochyta blight (AB). To reduce the impact of this disease, novel sources of resistance are required in chickpea cultivars. Here, we screened a new collection of wild Cicer accessions for AB resistance and identified accessions resistant to multiple, highly pathogenic isolates. In addition to this, analyses demonstrated that some collection sites of C. echinospermum harbor predominantly resistant accessions, knowledge that can inform future collection missions. Furthermore, a genome-wide association study identified regions of the C. reticulatum genome associated with AB resistance and investigation of these regions identified candidate resistance genes. Taken together, these results can be utilized to enhance the resistance of chickpea cultivars to this globally yield-limiting disease.


Asunto(s)
Cicer , Ascomicetos , Cicer/genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo
10.
Plant Dis ; 105(9): 2314-2324, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33851865

RESUMEN

Sclerotinia sclerotiorum is an important fungal pathogen of chickpea (Cicer arietinum L.), and it can cause yield losses up to 100%. The wild progenitors are much more diverse than domesticated chickpea, and this study describes how this relates to S. sclerotiorum resistance. Initially, the pathogenicity of nine Australian S. sclerotiorum isolates was examined on three Cicer lines to develop a robust phenotyping assay, and significant differences in isolate aggressiveness were identified with six isolates being classed as highly aggressive and three as moderately aggressive. We identified two S. sclerotiorum isolates, CU8.20 and CU10.12, to be highly aggressive and moderately aggressive, respectively. A subsequent phenotyping assay was conducted using the two isolates to evaluate 86 wild Cicer accessions (Cicer reticulatum and Cicer echinospermum) and two C. arietinum varieties for resistance to S. sclerotiorum. A subset of 12 genotypes was further evaluated, and subsequently, two wild Cicer accessions with consistently high levels of resistance to S. sclerotiorum were examined using the initially characterized nine isolates. Wild Cicer accessions Karab_084 and Deste_063 demonstrated consistent partial resistance to S. sclerotiorum. There were significant differences in responses to S. sclerotiorum across wild Cicer collection sites. The Cermik, Karabahce, and Destek sites' responses to the aggressive isolate CU8.20 ranged from resistant to susceptible, highlighting an interaction between isolate genotype and chickpea collection site for sclerotinia stem rot resistance. This is the first evidence of partial stem resistance identified in wild Cicer germplasm, which can be adopted in chickpea breeding programs to enhance S. sclerotiorum resistance in future chickpea varieties.


Asunto(s)
Ascomicetos , Cicer , Ascomicetos/genética , Australia , Cicer/genética , Genotipo
11.
BMC Genomics ; 21(1): 7, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898475

RESUMEN

BACKGROUND: The broad host range pathogen Sclerotinia sclerotiorum infects over 400 plant species and causes substantial yield losses in crops worldwide. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but little is known about the secondary metabolite repertoire of S. sclerotiorum. In this study, we predicted secondary metabolite biosynthetic gene clusters in the genome of S. sclerotiorum and analysed their expression during infection of Brassica napus using an existing transcriptome data set. We also investigated their sequence diversity among a panel of 25 previously published S. sclerotiorum isolate genomes. RESULTS: We identified 80 putative secondary metabolite clusters. Over half of the clusters contained at least three transcriptionally coregulated genes. Comparative genomics revealed clusters homologous to clusters in the closely related plant pathogen Botrytis cinerea for production of carotenoids, hydroxamate siderophores, DHN melanin and botcinic acid. We also identified putative phytotoxin clusters that can potentially produce the polyketide sclerin and an epipolythiodioxopiperazine. Secondary metabolite clusters were enriched in subtelomeric genomic regions, and those containing paralogues showed a particularly strong association with repeats. The positional bias we identified was borne out by intraspecific comparisons that revealed putative secondary metabolite genes suffered more presence / absence polymorphisms and exhibited a significantly higher sequence diversity than other genes. CONCLUSIONS: These data suggest that S. sclerotiorum produces numerous secondary metabolites during plant infection and that their gene clusters undergo enhanced rates of mutation, duplication and recombination in subtelomeric regions. The microevolutionary regimes leading to S. sclerotiorum secondary metabolite diversity have yet to be elucidated. Several potential phytotoxins documented in this study provide the basis for future functional analyses.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico/genética , Especificidad del Huésped/genética , Interacciones Huésped-Patógeno/genética , Ascomicetos/patogenicidad , Vías Biosintéticas/genética , Brassica napus/genética , Brassica napus/microbiología , Simulación por Computador , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Recombinación Genética/genética , Metabolismo Secundario/genética , Telómero/genética
12.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629952

RESUMEN

Ethylene is important for plant responses to environmental factors. However, little is known about its role in aphid resistance. Several types of genetic resistance against multiple aphid species, including both moderate and strong resistance mediated by R genes, have been identified in Medicago truncatula. To investigate the potential role of ethylene, a M. truncatula ethylene- insensitive mutant, sickle, was analysed. The sickle mutant occurs in the accession A17 that has moderate resistance to Acyrthosiphon kondoi, A. pisum and Therioaphis trifolii. The sickle mutant resulted in increased antibiosis-mediated resistance against A. kondoi and T. trifolii but had no effect on A. pisum. When sickle was introduced into a genetic background carrying resistance genes, AKR (A. kondoi resistance), APR (A. pisum resistance) and TTR (T. trifolii resistance), it had no effect on the strong aphid resistance mediated by these genes, suggesting that ethylene signaling is not essential for their function. Interestingly, for the moderate aphid resistant accession, the sickle mutant delayed leaf senescence following aphid infestation and reduced the plant biomass losses caused by both A. kondoi and T. trifolii. These results suggest manipulation of the ethylene signaling pathway could provide aphid resistance and enhance plant tolerance against aphid feeding.


Asunto(s)
Áfidos , Etilenos/metabolismo , Medicago truncatula/fisiología , Defensa de la Planta contra la Herbivoria/genética , Animales
13.
BMC Genomics ; 20(1): 135, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30764773

RESUMEN

BACKGROUND: Whilst information regarding small RNAs within agricultural crops is increasing, the miRNA composition of the nutritionally valuable pulse narrow-leafed lupin (Lupinus angustifolius) remains unknown. RESULTS: By conducting a genome- and transcriptome-wide survey we identified 7 Dicer-like and 16 Argonaute narrow-leafed lupin genes, which were highly homologous to their legume counterparts. We identified 43 conserved miRNAs belonging to 16 families, and 13 novel narrow-leafed lupin-specific miRNAs using high-throughput sequencing of small RNAs from foliar and root and five seed development stages. We observed up-regulation of members of the miRNA families miR167, miR399, miR156, miR319 and miR164 in narrow-leafed lupin seeds, and confirmed expression of miR156, miR166, miR164, miR1507 and miR396 using quantitative RT-PCR during five narrow-leafed lupin seed development stages. We identified potential targets for the conserved and novel miRNAs and were able to validate targets of miR399 and miR159 using 5' RLM-RACE. The conserved miRNAs are predicted to predominately target transcription factors and 93% of the conserved miRNAs originate from intergenic regions. In contrast, only 43% of the novel miRNAs originate from intergenic regions and their predicted targets were more functionally diverse. CONCLUSION: This study provides important insights into the miRNA gene regulatory networks during narrow-leafed lupin seed development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lupinus/genética , MicroARNs/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Proteínas Argonautas/genética , Variación Biológica Poblacional , Biología Computacional , Bases de Datos Genéticas , Duplicación de Gen , Redes Reguladoras de Genes , Silenciador del Gen , Genoma de Planta , Germinación/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lupinus/crecimiento & desarrollo , Filogenia , Hojas de la Planta/genética , Raíces de Plantas/genética , Factores de Transcripción/genética , Transcriptoma
14.
Plant Cell Environ ; 42(1): 174-187, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677403

RESUMEN

Narrow-leafed lupin (Lupinus angustifolius L.) cultivation was transformed by 2 dominant vernalization-insensitive, early flowering time loci known as Ku and Julius (Jul), which allowed expansion into shorter season environments. However, reliance on these loci has limited genetic and phenotypic diversity for environmental adaptation in cultivated lupin. We recently predicted that a 1,423-bp deletion in the cis-regulatory region of LanFTc1, a FLOWERING LOCUS T (FT) homologue, derepressed expression of LanFTc1 and was the underlying cause of the Ku phenotype. Here, we surveyed diverse germplasm for LanFTc1 cis-regulatory variation and identified 2 further deletions of 1,208 and 5,162 bp in the 5' regulatory region, which overlap the 1,423-bp deletion. Additionally, we confirmed that no other polymorphisms were perfectly associated with vernalization responsiveness. Phenotyping and gene expression analyses revealed that Jul accessions possessed the 5,162-bp deletion and that the Jul and Ku deletions were equally capable of removing vernalization requirement and up-regulating gene expression. The 1,208-bp deletion was associated with intermediate phenology, vernalization responsiveness, and gene expression and therefore may be useful for expanding agronomic adaptation of lupin. This insertion/deletion series may also help resolve how the vernalization response is mediated at the molecular level in legumes.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/genética , Mutación INDEL/genética , Lupinus/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Variación Genética/genética , Mutación INDEL/fisiología , Desequilibrio de Ligamiento/genética , Lupinus/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Estaciones del Año
15.
J Exp Bot ; 70(18): 4887-4902, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31087095

RESUMEN

Aphids, including the bluegreen aphid (BGA; Acyrthosiphon kondoi), are important pests in agriculture. Two BGA resistance genes have been identified in the model legume Medicago truncatula, namely AKR (Acyrthosiphon kondoi resistance) and AIN (Acyrthosiphon induced necrosis). In this study, progeny derived from a cross between a resistant accession named Jester and a highly susceptible accession named A20 were used to study the interaction between the AKR and AIN loci with respect to BGA performance and plant response to BGA infestation. These studies demonstrated that AKR and AIN have additive effects on the BGA resistance phenotype. However, AKR exerts dominant suppression epistasis on AIN-controlled macroscopic necrotic lesions. Nevertheless, both AKR and AIN condition production of H2O2 at the BGA feeding site. Electrical penetration graph analysis demonstrated that AKR prevents phloem sap ingestion, irrespective of the presence of AIN. Similarly, the jasmonic acid defense signaling pathway is recruited by AKR, irrespective of AIN. This research identifies an enhancement of aphid resistance through gene stacking, and insights into the interaction of distinct resistance genes against insect pests.


Asunto(s)
Antibiosis/genética , Áfidos/fisiología , Epistasis Genética , Medicago truncatula/genética , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Animales , Sitios Genéticos , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal
16.
Plant Cell Environ ; 41(9): 2155-2168, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29473655

RESUMEN

Quinolizidine alkaloids (QAs) are toxic secondary metabolites that complicate the end use of narrow-leafed lupin (NLL; Lupinus angustifolius L.) grain, as levels sometimes exceed the industry limit for its use as a food and feed source. The genotypic and environmental influences on QA production in NLL are poorly understood. Here, the expression of QA biosynthetic genes was analysed in vegetative and reproductive tissues of bitter (high QA) and sweet (low QA) accessions. It was demonstrated that sweet accessions are characterized by lower QA biosynthetic gene expression exclusively in leaf and stem tissues than bitter NLL, consistent with the hypothesis that QAs are predominantly produced in aerial tissues and transported to seeds, rather than synthesized within the seed itself. This analysis informed our identification of additional candidate genes involved in QA biosynthesis. Drought and temperature stress are two major abiotic stresses that often occur during NLL pod set. Hence, we assessed the effect of drought, increased temperature, and their combination, on QA production in three sweet NLL cultivars. A cultivar-specific response to drought and temperature in grain QA levels was observed, including the identification of a cultivar where alkaloid levels did not change with these stress treatments.


Asunto(s)
Alcaloides/biosíntesis , Lupinus/genética , Proteínas de Plantas/genética , Quinolizidinas/metabolismo , Alcaloides/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Lupinus/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Estrés Fisiológico , Temperatura
17.
Theor Appl Genet ; 131(4): 887-901, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29353413

RESUMEN

KEY MESSAGE: This first pan-Mediterranean analysis of genetic diversity in wild narrow-leafed lupin revealed strong East-West genetic differentiation of populations, an historic eastward migration, and signatures of genetic adaptation to climatic variables. Most grain crops suffer from a narrow genetic base, which limits their potential for adapting to new challenges such as increased stresses associated with climate change. Plant breeders are returning to the wild ancestors of crops and their close relatives to broaden the genetic base of their crops. Understanding the genetic adaptation of these wild relatives will help plant breeders most effectively use available wild diversity. Here, we took narrow-leafed lupin (Lupinus angustifolius L.) as a model to understand adaptation in a wild crop ancestor. A set of 142 wild accessions of narrow-leafed lupin from across the Mediterranean basin were subjected to genotyping-by-sequencing using Diversity Arrays Technology. Phylogenetic, linkage disequilibrium and demographic analyses were employed to explore the history of narrow-leafed lupin within the Mediterranean region. We found strong genetic differentiation between accessions from the western and eastern Mediterranean, evidence of an historic West to East migration, and that eastern Mediterranean narrow-leafed lupin experienced a severe and recent genetic bottleneck. We showed that these two populations differ for flowering time as a result of local adaptation, with the West flowering late while the East flowers early. A genome-wide association study identified single nucleotide polymorphism markers associated with climatic adaptation. Resolving the origin of wild narrow-leafed lupin and how its migration has induced adaptation to specific regions of the Mediterranean serves as a useful resource not only for developing narrow-leafed lupin cultivars with greater resilience to a changing climate, but also as a model which can be applied to other legumes.


Asunto(s)
Variación Genética , Lupinus/genética , Adaptación Biológica/genética , Flores/fisiología , Estudios de Asociación Genética , Marcadores Genéticos , Genética de Población , Genoma de Planta , Genotipo , Desequilibrio de Ligamiento , Región Mediterránea , Filogenia , Polimorfismo de Nucleótido Simple
18.
Plant Biotechnol J ; 15(3): 318-330, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27557478

RESUMEN

Lupins are important grain legume crops that form a critical part of sustainable farming systems, reducing fertilizer use and providing disease breaks. It has a basal phylogenetic position relative to other crop and model legumes and a high speciation rate. Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is gaining popularity as a health food, which is high in protein and dietary fibre but low in starch and gluten-free. We report the draft genome assembly (609 Mb) of NLL cultivar Tanjil, which has captured >98% of the gene content, sequences of additional lines and a dense genetic map. Lupins are unique among legumes and differ from most other land plants in that they do not form mycorrhizal associations. Remarkably, we find that NLL has lost all mycorrhiza-specific genes, but has retained genes commonly required for mycorrhization and nodulation. In addition, the genome also provided candidate genes for key disease resistance and domestication traits. We also find evidence of a whole-genome triplication at around 25 million years ago in the genistoid lineage leading to Lupinus. Our results will support detailed studies of legume evolution and accelerate lupin breeding programmes.


Asunto(s)
Genoma de Planta/genética , Lupinus/genética , Lupinus/microbiología , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Proteínas de Plantas/fisiología , Poliploidía , Sintenía/genética
19.
BMC Genomics ; 17: 191, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26945779

RESUMEN

BACKGROUND: Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. RESULTS: Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. CONCLUSIONS: We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.


Asunto(s)
Fabaceae/microbiología , Fusarium/genética , Genoma Fúngico , Hibridación Genómica Comparativa , Secuencia Conservada , ADN de Hongos/genética , Proteínas Fúngicas/genética , Fusarium/clasificación , Especificidad del Huésped , Anotación de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA