RESUMEN
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.
Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Simulación del Acoplamiento Molecular , Proteínas de la Nucleocápside/metabolismo , Pemetrexed/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Sodio/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológicoRESUMEN
Transmissible gastroenteritis virus (TGEV) is member of the family Coronaviridae and mainly causes acute diarrhea. TGEV infection is characterized by vomiting, watery diarrhea, and severe dehydration, resulting in high mortality rates in neonatal piglets. TGEV infection symptoms are related to an imbalance of sodium absorption in small intestinal epithelial cells; however, the etiology of sodium imbalance diarrhea caused by TGEV remains unclear. In this study, we performed transcriptomic analysis of intestinal tissues from infected and healthy piglets and observed that the expression of NHE3, encoding Na+/H+ exchanger 3 (NHE3), the main exchanger of electroneutral sodium in intestinal epithelial cells, was significantly reduced upon TGEV infection. We also showed that specific inhibition of intestinal NHE3 activity could lead to the development of diarrhea in piglets. Furthermore, we revealed an interaction between TGEV N protein and NHE3 near the nucleus. The binding of TGEV N to NHE3 directly affected the expression and activity of NHE3 on the cell surface and affected cellular electrolyte absorption, leading to diarrhea. Molecular docking and computer-aided screening techniques were used to screen for the blocker of the interaction between TGEV N and NHE3, which identified irinotecan. We then demonstrated that irinotecan was effective in relieving TGEV-induced diarrhea in piglets. These findings provide new insights into the mechanism of TGEV-induced sodium imbalance diarrhea and could lead to the design of novel antiviral strategies against TGEV. IMPORTANCE A variety of coronaviruses have been found to cause severe diarrhea in hosts, including TGEV; however, the pathogenic mechanism is not clear. Therefore, prompt determination of the mechanism and identification of efficient therapeutic agents are required, both for public health reasons and for economic development. In this study, we demonstrated that NHE3 is the major expressed protein of NHEs in the intestine, and its expression decreased by nearly 70% after TGEV infection. Also, specific inhibition of intestinal NHE3 resulted in severe diarrhea in piglets. This demonstrated that NHE3 plays an important role in TGEV-induced diarrhea. In addition, we found that TGEV N directly regulates NHE3 expression and activity through protein-protein interaction, which is essential to promote diarrhea. Molecular docking and other techniques demonstrated that irinotecan could block the interaction and diarrhea caused by TGEV. Thus, our results provide a basis for the development of novel therapeutic agents against TGEV and guidance for the development of drugs for other diarrhea-causing coronaviruses.
Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Virus de la Gastroenteritis Transmisible/fisiología , Intercambiador 3 de Sodio-Hidrógeno/genética , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Proteínas de la Nucleocápside/metabolismo , Irinotecán , Simulación del Acoplamiento Molecular , Diarrea/veterinaria , Intercambiadores de Sodio-Hidrógeno/metabolismo , Coronavirus/metabolismo , Sodio/metabolismoRESUMEN
As part of the genus Enteropathogenic Coronaviruses, Porcine Epidemic Diarrhea Virus (PEDV) is an important cause of early diarrhea and death in piglets, and one of the most difficult swine diseases to prevent and control in the pig industry. Previously, we found that PEDV can block Na+ absorption and induce diarrhea in piglets by inhibiting the activity of the sodium-hydrogen ion transporter NHE3 in pig intestinal epithelial cells, but the mechanism needs to be further explored. The epidermal growth factor receptor (EGFR) has been proved to be one of the co-receptors involved in many viral infections and a key protein involved in the regulation of NHE3 activity in response to various pathological stimuli. Based on this, our study used porcine intestinal epithelial cells (IPEC-J2) as an infection model to investigate the role of EGFR in regulating NHE3 activity after PEDV infection. The results showed that EGFR mediated viral invasion by interacting with PEDV S1, and activated EGFR regulated the downstream EGFR/ERK signaling pathway, resulting in decreased expression of NHE3 and reduced NHE3 mobility at the plasma membrane, which ultimately led to decreased NHE3 activity. The low level of NHE3 expression in intestinal epithelial cells may be a key factor leading to PEDV-induced diarrhea in newborn piglets. This study reveals the importance of EGFR in the regulation of NHE3 activity by PEDV and provides new targets and clues for the prevention and treatment of PEDV-induced diarrhea in piglets.
RESUMEN
Porcine epidemic diarrhea virus (PEDV) mainly invades the small intestine and promotes an inflammatory response, eventually leading to severe diarrhea, vomiting, dehydration, and even death of piglets, which seriously threatens the economic development of pig farming. In recent years, researchers have found that probiotics can improve the intestinal microenvironment and reduce diarrhea. At the same time, certain probiotics have been shown to have antiviral effects; however, their mechanisms are different. Herein, we aimed to investigate the inhibitory effect of Lactiplantibacillus plantarum supernatant (LP-1S) on PEDV and its mechanism. We used IPEC-J2 cells as a model to assess the inhibitory effect of LP-1S on PEDV and to further investigate the relationship between LP-1S, Ca2+, and PEDV. The results showed that a divalent cation chelating agent (EGTA) and calcium channel inhibitors (Bepridil hydrochloride and BAPTA-acetoxymethylate) could inhibit PEDV proliferation while effectively reducing the intracellular Ca2+ concentration. Furthermore, LP-1S could reduce PEDV-induced loss of calcium channel proteins (TRPV6 and PMCA1b), alleviate intracellular Ca2+ accumulation caused by PEDV infection, and promote the balance of intra- and extracellular Ca2+ concentrations, thereby inhibiting PEDV proliferation. In summary, we found that LP-1S has potential therapeutic value against PEDV, which is realized by modulating Ca2+. This provides a potential new drug to treat PEDV infection.
RESUMEN
As the main exchanger of electroneutral NaCl absorption, sodium-hydrogen exchanger isoform 3 (NHE3) circulates in the epithelial brush border (BB) and intracellular compartments in a multi-protein complex. The size of the NHE3 complex changes during rapid regulation events. Recycling regulation of NHE3 in epithelial cells can be roughly divided into three stages. First, when stimulated by Ca2+, cGMP, and cAMP-dependent signaling pathways, NHE3 is converted from an immobile complex found at the apical microvilli (MV) into an easily internalized and mobile form that relocates to a compartment near the base of the MV. Second, NHE3 is internalized by clathrin and albumin-dependent pathways into cytoplasmic endosomal compartments, where the complex is reprocessed and reassembled. Finally, NHE3 is translocated from the recycling endosomes (REs) to the apex of epithelial cells, a process that can be stimulated by an increase in sodium-glucose cotransporter 1 (SGLT1) activity, epidermal growth factor receptor (EGFR) signaling, Ca2+ signaling, and binding to ßPix and SH3 and multiple ankyrin repeat domains 2 (Shank2) proteins. This review describes the molecular steps and protein interactions involved in the recycling movement of NHE3 from the apex of epithelial cells, into vesicles, where it is reprocessed and reassembled, and returned to its original location on the plasma membrane, where it exerts its physiological function.
Asunto(s)
Células Epiteliales , Intercambiadores de Sodio-Hidrógeno , Animales , Células Epiteliales/metabolismo , Ratones , Microvellosidades/metabolismo , Isoformas de Proteínas/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismoRESUMEN
Transmissible gastroenteritis (TGE) and porcine epidemic diarrhea (PED) are highly transmissible intestinal infections caused by transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV), respectively. They are clinically associated with vomiting, diarrhea, and dehydration in piglets. An imbalance in Na+ uptake by intestinal epithelial cells causes TGEV/PEDV-induced diarrhea. However, the mechanism by which TGEV/PEDV-infection in piglets causes Na+ imbalance diarrhea has not been elucidated. In the present study, we demonstrated that specific inhibition of NHE3 activity caused small intestinal bulging, intestinal wall thinning and severe diarrhea in piglets, consistent with the signs of TGEV/PEDV infection. This study further elucidated the role of NHE3 in TGEV/PEDV-induced diarrhea. In this study, small intestinal epithelial cells (IPEC-J2) were used as a model of infection. The results showed that TGEV/PEDV infection reduced NHE3 activity and Na+ uptake in IPEC-J2 cells. Further studies revealed that the use of NHE3-specific inhibitors could reduce the amount of cell membrane NHE3, thereby decreasing Na+ uptake and ultimately leading to diarrhea. Transcriptomic studies performed on obtained jejunal tissues were also consistent with pre-laboratory results. This study will provide a basis for understanding Na+ imbalance diarrhea caused by TGEV/PEDV, as well as for elucidating the diarrheal pathogenesis of other members of α-animal coronaviruses.
Asunto(s)
Infecciones por Coronavirus , Diarrea , Gastroenteritis Porcina Transmisible , Intercambiador 3 de Sodio-Hidrógeno , Enfermedades de los Porcinos , Animales , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/veterinaria , Diarrea/fisiopatología , Diarrea/veterinaria , Células Epiteliales/patología , Células Epiteliales/virología , Gastroenteritis Porcina Transmisible/fisiopatología , Virus de la Diarrea Epidémica Porcina , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Porcinos , Virus de la Gastroenteritis TransmisibleRESUMEN
Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea and vomiting, dehydration, and high mortality in neonatal piglets. Despite extensive research focusing on the pathogenesis of PEDV infection, the molecular pathogenesis of PEDV-induced diarrhea in piglets remains unclear. Na+/H+ exchanger 3 (NHE3), the main exchanger of electroneutral sodium in intestinal epithelial cells, is closely associated with the occurrence of diarrhea. To date, there is no study on whether diarrhea caused by PEDV infection is related to the activity of NHE3. In the present study, it was found that the expression level of cell membrane protein NHE3 significantly decreased after PEDV infection, whereas the total level of protein expression was not significantly changed. The Na+/H+ transport rate and the mRNA abundance of NHE3 decreased; the NHE3 activity decreased gradually with increasing infection time. In vivo, after PEDV infection of newborn piglets, rupture of intestinal villi and interstitial degeneration of intestinal epithelial cells in different intestinal segments were observed by hematoxylin-eosin staining. Immunohistochemical and immunofluorescence methods were used to observe the decreased expression of NHE3 protein on the membrane of intestinal epithelial cells in the jejunum and ileum. Taken together, these data indicate that PEDV infection reduces NHE3 activity in intestinal epithelial cells, hindering Na+ transport and thus causing diarrhea.
Asunto(s)
Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Virus de la Diarrea Epidémica Porcina , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Enfermedades de los Porcinos/virología , Animales , Animales Recién Nacidos , Anticuerpos , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Diarrea/virología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/inmunología , Intestinos/metabolismo , Ratones , Intercambiador 3 de Sodio-Hidrógeno/genética , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Células VeroRESUMEN
Transmissible gastroenteritis virus (TGEV) primarily replicates in intestinal epithelial cells and causes severe damage to host cells, resulting in diarrhea. Surface NHE3 serves as the key regulatory site controlling electroneutral Na+ absorption. In this study, our results showed that the surface NHE3 content was significantly reduced following TGEV infection, whereas the total level of protein expression was not significantly changed, and NHE3 activity gradually decreased with prolonged infection time. We then inhibited SGLT1 expression by lentiviral interference and drug inhibition, respectively. Inhibition studies showed that the level of phosphorylation of the downstream key proteins, MAPKAPK-2 and EZRIN, in the SGLT1-mediated p38MAPK/AKt2 signaling pathway was significantly increased. The surface NHE3 expression was also significantly increased, and NHE3 activity was also significantly enhanced. These results demonstrate that a TGEV infection can inhibit NHE3 translocation and attenuates sodium-hydrogen exchange activity via the SGLT1-mediated p38MAPK/AKt2 signaling pathway, affecting cellular electrolyte absorption leading to diarrhea.
Asunto(s)
Enterocitos/virología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transportador 1 de Sodio-Glucosa/genética , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Proteínas Proto-Oncogénicas c-akt/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética , Porcinos , Virus de la Gastroenteritis Transmisible , Proteínas Quinasas p38 Activadas por Mitógenos/genéticaRESUMEN
Transmissible gastroenteritis (TGE), caused by transmissible gastroenteritis virus (TGEV), is one many gastrointestinal inflections in piglets, characterized by diarrhea, and high mortality. Probiotics are ubiquitous bacteria in animal intestines, which have many functions, such as promoting intestinal peristalsis and maintaining the intestinal balance. We found that the supernatant of the Lp-1 strain of Lactobacillus plantarum, isolated in our laboratory, and named Lp-1s had marked anti-TGEV effect on IPEC-J2 cells. Lp-1s could induce large amounts of interferon-ß in IPEC-J2 cells in the early stage (6 h) of infection with TGEV, and increased the level of phosphorylated signal transducer and activator of transcription and its nuclear translocation in the late stage (24-48 h) of infection. This resulted in upregulated expression of interferon-stimulated genes, and increased the transcription and protein expression of antiviral proteins, resulting in an anti-TGEV effect.