Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Scand J Immunol ; 98(2): e13283, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441379

RESUMEN

Multiple sclerosis (MS) is an inflammatory autoimmune disorder of the central nervous system and the leading cause of progressive neurological disability in young adults. It decreases the patient's lifespan by about 10 years and affects women more than men. No medication entirely restricts or reverses neurological degradation. However, early diagnosis and treatment increase the possibility of a better outcome. To identify new MS biomarkers, we tested the expression of six potential markers (P2X4, P2X7, CXCR4, RGS1, RGS16 and VAV1) using qPCR in peripheral blood mononuclear cells (PBMC) of MS patients treated with interferon ß (IFNß), with glatiramer acetate (GA) or untreated. We showed that P2X7 and VAV1 are significantly induced in MS patients. In contrast, the expression of P2X4, CXCR4, RGS1 and RGS16 was not significantly modified by MS in PBMC. P2X7 and VAV1 are essentially induced in female patients, suggesting these markers are connected to sex-specific mechanisms. Strikingly, VAV1 expression is higher in healthy women than healthy men and IFNß treatment of MS reduced VAV1 expression in female MS patients while it up-regulated VAV1 in male MS patients. Our data point to the differential, sex-dependent value of MS markers and treatment effects. Although rgs16 expression in PBMC was not a valid MS marker in patients, the strong upregulation of P2X4 and P2X7 induced in the spinal cord of WT mice by EAE was abrogated in rgs16KO mice suggesting that rgs16 is required for P2X4 and P2X7 induction by neurological diseases.


Asunto(s)
Enfermedades Autoinmunes , Esclerosis Múltiple , Animales , Femenino , Humanos , Masculino , Ratones , Adulto Joven , Sistema Nervioso Central , Interferón beta/uso terapéutico , Leucocitos Mononucleares , Esclerosis Múltiple/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-vav/genética
2.
Mol Psychiatry ; 24(1): 108-125, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29934546

RESUMEN

Extracellular aggregates of amyloid ß (Aß) peptides, which are characteristic of Alzheimer's disease (AD), act as an essential trigger for glial cell activation and the release of ATP, leading to the stimulation of purinergic receptors, especially the P2X7 receptor (P2X7R). However, the involvement of P2X7R in the development of AD is still ill-defined regarding the dual properties of this receptor. Particularly, P2X7R activates the NLRP3 inflammasome leading to the release of the pro-inflammatory cytokine, IL-1ß; however, P2X7R also induces cleavage of the amyloid precursor protein generating Aß peptides or the neuroprotective fragment sAPPα. We thus explored in detail the functions of P2X7R in AD transgenic mice. Here, we show that P2X7R deficiency reduced Aß lesions, rescued cognitive deficits and improved synaptic plasticity in AD mice. However, the lack of P2X7R did not significantly affect the release of IL-1ß or the levels of non-amyloidogenic fragment, sAPPα, in AD mice. Instead, our results show that P2X7R plays a critical role in Aß peptide-mediated release of chemokines, particularly CCL3, which is associated with pathogenic CD8+ T cell recruitment. In conclusion, our study highlights a novel detrimental function of P2X7R in chemokine release and supports the notion that P2X7R may be a promising therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1183-1194, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28286160

RESUMEN

P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RBlow. Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.


Asunto(s)
Colitis/inmunología , Inmunidad Mucosa , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Receptores Purinérgicos P2X7/inmunología , Linfocitos T/inmunología , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Femenino , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Oxazolona/efectos adversos , Oxazolona/farmacología , Receptores Purinérgicos P2X7/genética , Linfocitos T/patología , Ácido Trinitrobencenosulfónico/toxicidad
4.
J Biol Chem ; 287(41): 34583-95, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22891241

RESUMEN

The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteolisis , Receptores Purinérgicos P2X7/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2X7/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
5.
J Biol Chem ; 286(4): 2596-606, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21081501

RESUMEN

The amyloid precursor protein (APP) is cleaved by ß- and γ-secretases to generate the ß-amyloid (Aß) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aß peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/metabolismo , Neuronas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Células Madre/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Dipéptidos/farmacología , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Mutantes , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Inhibidores de Proteasas/farmacología , Estructura Terciaria de Proteína , Receptores Purinérgicos P2X7/genética
6.
Eur J Immunol ; 41(6): 1696-708, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21469107

RESUMEN

Activated B cells can regulate immunity and have been envisaged as a potential cell-based therapy for treating autoimmune diseases. However, activated human B cells can also propagate immune responses, and the effects resulting from their infusion into patients cannot be predicted. This led us to consider resting B cells, which in contrast are poorly immunogenic, as an alternative cellular platform for the suppression of unwanted immunity. Here, we report that resting B cells can be directly engineered with lentiviral vectors to express antigens in a remarkably simple, rapid, and effective way. Notably, this neither required nor induced activation of the B cells. With this approach we were able to produce reprogrammed resting B cells that inhibited antigen-specific CD4(+) T cells, CD8(+) T cells, and B cells upon adoptive transfer in mice. Furthermore, resting B cells engineered to ectopically express myelin oligodendrocyte glycoprotein antigen protected recipient mice from severe disability and demyelination in EAE, and even induced complete remission from disease in mice lacking functional natural Tregs, which otherwise developed chronic paralysis. In conclusion, our study introduces reprogrammed quiescent B cells as a novel tool for suppressing undesirable immunity.


Asunto(s)
Linfocitos B/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Encefalomielitis Autoinmune Experimental/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Traslado Adoptivo , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos B/trasplante , Diferenciación Celular/genética , Células Cultivadas , Enfermedad Crónica , Anergia Clonal , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/terapia , Ingeniería Genética , Humanos , Terapia de Inmunosupresión , Interleucina-10/genética , Ratones , Ratones Noqueados , Proteínas de la Mielina , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/inmunología , Glicoproteína Asociada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Transgenes/genética
7.
Biomed J ; 45(2): 286-288, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35430421

RESUMEN

This special edition summarizes major advances in our understanding of signaling by T lymphocytes. T cell interactions with antigen-presenting cells (APCs) and other immune cells are characterized by changes in T cell adhesion and major rearrangements of the actin cytoskeleton. This issue describes some of the mediators of these changes both within the T cells and on the T cell surface. The five articles focus on "inside-out integrin signaling" in T cells, components of the immunological synapse between lymphocyte and APCs, an unexpected role for T cell receptor (TCR) signaling from endosomes, transfer of membrane constituents from APCs to T cells via trogocytosis, immune deficiencies in these T cell signaling pathways, and the role of thymocyte-expressed molecule involved in selection (THEMIS) in thymocyte development and peripheral T cell function.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Humanos , Sinapsis Inmunológicas/metabolismo , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
8.
Front Immunol ; 13: 957008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248812

RESUMEN

The severe lymphoproliferative and lupus diseases developed by MRL/lpr mice depend on interactions between the Fas lpr mutation and MRL genetic background. Thus, the Fas lpr mutation causes limited disease in C57BL/6 mice. We previously found that accumulating B220+ CD4-CD8- double negative (DN) T cells in MRL/lpr mice show defective P2X7 receptor ( P2X7)-induced cellular functions, suggesting that P2X7 contributes to T-cell homeostasis, along with Fas. Therefore, we generated a B6/lpr mouse strain (called B6/lpr-p2x7KO) carrying homozygous P2X7 knockout alleles. B6/lpr-p2x7KO mice accumulated high numbers of FasL-expressing B220+ DN T cells of CD45RBhighCD44high effector/memory CD8+ T-cell origin and developed severe lupus, characterized by leukocyte infiltration into the tissues, high levels of IgG anti-dsDNA and rheumatoid factor autoantibodies, and marked cytokine network dysregulation. B6/lpr-p2x7KO mice also exhibited a considerably reduced lifespan. P2X7 is therefore a novel regulator of T-cell homeostasis, of which cooperation with Fas is critical to prevent lymphoaccumulation and autoimmunity.


Asunto(s)
Receptores Purinérgicos P2X7 , Factor Reumatoide , Animales , Autoanticuerpos , Homeostasis , Inmunoglobulina G , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Receptores Purinérgicos P2X7/genética
9.
J Immunol ; 183(2): 1446-55, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19553541

RESUMEN

Bacterial LPS triggers monocytes and macrophages to produce several inflammatory cytokines and mediators. However, once exposed to LPS, they become hyporesponsive to a subsequent endotoxin challenge. This phenomenon is defined as LPS desensitization or tolerance. Previous studies have identified some components of the biochemical pathways involved in negative modulation of LPS responses. In particular, it has been shown that the IL-1R-related protein ST2 could be implicated in LPS tolerance. The natural ligand of ST2 was recently identified as IL-33, a new member of the IL-1 family. In this study, we investigated whether IL-33 triggering of ST2 was able to induce LPS desensitization of mouse macrophages. We found that IL-33 actually enhances the LPS response of macrophages and does not induce LPS desensitization. We demonstrate that this IL-33 enhancing effect of LPS response is mediated by the ST2 receptor because it is not found in ST2 knockout mice. The biochemical consequences of IL-33 pretreatment of mouse macrophages were investigated. Our results show that IL-33 increases the expression of the LPS receptor components MD2 (myeloid differentiation protein 2) and TLR-4, the soluble form of CD14 and the MyD88 adaptor molecule. In addition, IL-33 pretreatment of macrophages enhances the cytokine response to TLR-2 but not to TLR-3 ligands. Thus, IL-33 treatment preferentially affects the MyD88-dependent pathway activated by the TLR.


Asunto(s)
Citocinas/biosíntesis , Interleucinas/fisiología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Animales , Línea Celular , Tolerancia Inmunológica , Inflamación/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Receptores de Interleucina/inmunología , Receptores Toll-Like/metabolismo
10.
Am J Respir Crit Care Med ; 182(6): 774-83, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20522787

RESUMEN

RATIONALE: Pulmonary fibrosis is a devastating as yet untreatable disease. We previously investigated the endogenous mediators released on lung injury and showed that uric acid is a danger signal activating Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in lung inflammation and fibrosis (Gasse et al., Am J Respir Crit Care Med 2009;179:903-913). OBJECTIVES: Here we address the role of extracellular adenosine triphosphate (eATP) in pulmonary inflammation and fibrosis. METHODS: ATP was quantified in bronchoalveolar lavage fluid (BALF) of control subjects and patients with idiopathic pulmonary fibrosis. The contribution of eATP as a danger signal was assessed in a murine model of lung fibrosis induced by airway-administered bleomycin (BLM), an intercalating agent that causes DNA strand breaks. MEASUREMENTS AND MAIN RESULTS: Fibrotic patients have elevated ATP content in BALF in comparison with control individuals. In mice, we report an early increase in eATP levels in BALF on BLM administration. Modulation of eATP levels with the ATP-degrading enzyme apyrase greatly reduced BLM-induced inflammatory cell recruitment, lung IL-1ß, and tissue inhibitor of metalloproteinase (TIMP)-1 production, while administration of ATP-γS, a stable ATP derivative, enhanced inflammation. P2X(7) receptor-deficient mice presented dramatically reduced lung inflammation, with reduced fibrosis markers such as lung collagen content and matrix-remodeling proteins TIMP-1 and matrix metalloproteinase-9. The acute inflammation depends on a functional pannexin-1 hemichannel protein. In vitro, ATP is released by pulmonary epithelial cells on BLM-induced stress and this is partly dependent on the presence of functional P2X(7) receptor and pannexin-1 hemichannel. CONCLUSIONS: ATP released from BLM-injured lung cells constitutes a major endogenous danger signal that engages the P2X(7) receptor/pannexin-1 axis, leading to IL-1ß maturation and lung fibrosis.


Asunto(s)
Adenosina Trifosfato/fisiología , Lesión Pulmonar/metabolismo , Neumonía/etiología , Fibrosis Pulmonar/etiología , Receptores Purinérgicos P2/metabolismo , Animales , Bleomicina , Líquido del Lavado Bronquioalveolar/química , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Humanos , Lesión Pulmonar/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismo , Receptores Purinérgicos P2X7 , Transducción de Señal
11.
Biomed J ; 44(2): 112-114, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33985926

RESUMEN

This special issue contains four review articles that analyze the development and biology of innate lymphoid cells (ILCs), which are the most recently-discovered group of innate immune cells. This unique group of lymphoid cells lacks the RAG gene and consequently does not express B cell nor T cell antigen-specific receptors. They are abundant at mucosal surfaces, where they play a role in immunity and homeostasis. The ILCs are the focus of intensive research efforts to understand their development and function.


Asunto(s)
Linfocitos B , Linfocitos T , Citocinas , Inmunidad Innata
12.
Biomed J ; 44(4): 383-387, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34438083

RESUMEN

This special issue contains four review articles that describe advances in analysis of mutations responsible for the autoimmune lymphoproliferative syndrome (ALPS). This disease is triggered by a family of mutations in genes involved in the extrinsic apoptotic pathway such as FAS, FASL and CASP10. Advances in sequencing technology have enabled extended genetic testing of patients with various defects in alternative biological have pathways that can cause ALPS-like syndromes. Various gene mutations were identified which affect the CTLA-4 immune checkpoint, the STAT3 pathway and the RAS/MAPK pathway. Tips gleaned from analyses of the different gene mutations involved in ALPS and ALPS-like syndromes are contributing to a better understanding of their functional consequences. Genetic diagnoses of the disease should help us to identify specific therapeutic targets and design personalized treatment for each patient.


Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Apoptosis , Humanos , Mutación/genética , Receptor fas/genética
13.
Front Immunol ; 12: 645834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897694

RESUMEN

Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1ß and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.


Asunto(s)
Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/fisiología , Animales , Anticuerpos Monoclonales/farmacología , Degranulación de la Célula , Encefalomielitis Autoinmune Experimental/etiología , Etanol/farmacología , Humanos , Inflamasomas/fisiología , Inflamación/etiología , Mastocitos/fisiología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores de Antígenos de Linfocitos T/fisiología , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/fisiología
14.
Nat Commun ; 12(1): 653, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510147

RESUMEN

Only a subpopulation of non-small cell lung cancer (NSCLC) patients responds to immunotherapies, highlighting the urgent need to develop therapeutic strategies to improve patient outcome. We develop a chemical positive modulator (HEI3090) of the purinergic P2RX7 receptor that potentiates αPD-1 treatment to effectively control the growth of lung tumors in transplantable and oncogene-induced mouse models and triggers long lasting antitumor immune responses. Mechanistically, the molecule stimulates dendritic P2RX7-expressing cells to generate IL-18 which leads to the production of IFN-γ by Natural Killer and CD4+ T cells within tumors. Combined with immune checkpoint inhibitor, the molecule induces a complete tumor regression in 80% of LLC tumor-bearing mice. Cured mice are also protected against tumor re-challenge due to a CD8-dependent protective response. Hence, combination treatment of small-molecule P2RX7 activator followed by immune checkpoint inhibitor represents a strategy that may be active against NSCLC.


Asunto(s)
Carcinoma Pulmonar de Lewis/terapia , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Receptores Purinérgicos P2X7/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Línea Celular Tumoral , Terapia Combinada , Femenino , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-18/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estructura Molecular , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
15.
Front Immunol ; 11: 113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117264

RESUMEN

P2X purinergic receptors are extracellular ATP-gated ion channel receptors present on the cell plasma membrane. P2X receptors have been found in Metazoa, fungi, amoebas, and in plants. In mammals, P2X7 is expressed by a large number of cell types and is involved in inflammation and immunity. Remarkably, P2X7 does not desensitize as other P2X do, a feature linked to a "C-cysteine anchor" intra-cytoplasmic motif encoded by exon 11. Another specific feature of P2X7 is its C-terminal cytoplasmic ballast domain (exon 13) which contains a zinc (Zn) coordinating cysteine motif and a GDP-binding region. To determine the origin of P2X7, we analyzed and compared sequences and protein motifs of the C-terminal intra-cytoplasmic region across all main groups of Metazoa. We identified proteins with typical ballast domains, sharing a remarkably conserved Zn-coordinating cysteine motif. Apart from vertebrates, these ballast domains were not associated with a typical P2X architecture. These results strongly suggest that P2X7 resulted from the fusion of a P2X gene, highly similar to P2X4, with an exon encoding a ballast domain. Our work brings new evidence on the origin of the P2X7 purinergic receptor and identifies the Zn-coordinating cysteine domain as the fundamental feature of the ancient ballast fold.


Asunto(s)
Secuencias de Aminoácidos/genética , Receptores Purinérgicos P2X7/genética , Animales , Evolución Biológica , Bases de Datos Genéticas , Humanos , Filogenia , Ratas , Receptores Purinérgicos P2X , Receptores Purinérgicos P2X4/genética , Alineación de Secuencia , Vertebrados
16.
J Neurochem ; 109(3): 846-57, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19250337

RESUMEN

Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.


Asunto(s)
Adenosina Trifosfato/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores Purinérgicos P2/metabolismo , Adenosina Trifosfato/análogos & derivados , Animales , Calcio/metabolismo , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Quelantes/farmacología , Cuerpo Estriado/citología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Líquido Extracelular/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis/metabolismo , Necrosis/patología , Receptores Purinérgicos P2/deficiencia , Receptores Purinérgicos P2X7 , Estaurosporina/farmacología , Sales de Tetrazolio , Tiazoles , Factores de Tiempo
17.
Front Cell Neurosci ; 13: 401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551714

RESUMEN

The purinergic receptor P2X7 is expressed in neural and immune cells known to be involved in neurological diseases. Its ligand, ATP, is a signaling molecule that can act as a neurotransmitter in physiological conditions or as a danger signal when released in high amount by damaged/dying cells or activated glial cells. Thus, ATP is a danger-associated molecular pattern. Binding of ATP by P2X7 leads to the activation of different biochemical pathways, depending on the physiological or pathological environment. The aim of this review is to discuss various functions of P2X7 in the immune and central nervous systems. We present evidence that P2X7 may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies: epilepsy, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, age-related macular degeneration and cerebral artery occlusion.

18.
Front Immunol ; 10: 2074, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552031

RESUMEN

Extracellular nucleotides are important mediators of cell activation and trigger multiple responses via membrane receptors known as purinergic receptors (P2). P2X receptors are ligand-gated ion channels, activated by extracellular ATP. P2X4 is one of the most sensitive purinergic receptors, that is typically expressed by neurons, microglia, and some epithelial and endothelial cells. P2X4 mediates neuropathic pain via brain-derived neurotrophic factor and is also involved in inflammation in response to high ATP release. It is therefore involved in multiple inflammatory pathologies as well as neurodegenerative diseases. We have produced monoclonal antibodies (mAb) directed against this important human P2X4 receptor. Focusing on two mAbs, we showed that they also recognize mouse and rat P2X4. We demonstrated that these mAbs can be used in flow cytometry, immunoprecipitation, and immunohistochemistry, but not in Western blot assays, indicating that they target conformational epitopes. We also characterized the expression of P2X4 receptor on mouse and human peripheral blood lymphocytes (PBL). We showed that P2X4 is expressed at the surface of several leukocyte cell types, with the highest expression level on eosinophils, making them potentially sensitive to adenosine triphosphate (ATP). P2X4 is expressed by leucocytes, in human and mouse, with a significant gender difference, males having higher surface expression levels than females. Our findings reveal that PBL express significant levels of P2X4 receptor, and suggest an important role of this receptor in leukocyte activation by ATP, particularly in P2X4high expressing eosinophils.


Asunto(s)
Eosinófilos/inmunología , Eosinófilos/metabolismo , Expresión Génica , Receptores Purinérgicos P2X4/genética , Animales , Astrocitoma/genética , Astrocitoma/metabolismo , Biomarcadores , Línea Celular , Femenino , Glioma/genética , Glioma/metabolismo , Humanos , Inmunofenotipificación , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Ratones , Microglía/inmunología , Microglía/metabolismo , Receptores Purinérgicos P2X4/metabolismo
19.
J Clin Invest ; 115(2): 302-12, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15668735

RESUMEN

We show in these studies that Qa-1-dependent CD8+ T cells are involved in the establishment and maintenance of peripheral self tolerance as well as facilitating affinity maturation of CD4+ T cells responding to foreign antigen. We provide experimental evidence that the strategy used by the Qa-1-dependent CD8+ T cells to accomplish both these tasks in vivo is to selectively downregulate T cell clones that respond to both self and foreign antigens with intermediate, not high or low, affinity/avidity. Thus, the immune system evolved to regulate peripheral immunity using a unified mechanism that efficiently and effectively permits the system to safeguard peripheral self tolerance yet promote the capacity to deal with foreign invaders.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Autotolerancia/inmunología , Animales , Autoantígenos/genética , Autoantígenos/inmunología , Autoinmunidad/genética , Autoinmunidad/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Autotolerancia/genética
20.
Front Immunol ; 9: 360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535730

RESUMEN

A previous report has shown that regulatory T cells (Treg) were markedly more sensitive to adenosine-5'-triphosphate (ATP) than conventional T cells (Tconv). Another one has shown that Tregs and CD45RBlow Tconvs, but not CD45RBhigh Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RBlow Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R) membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RBhighCD44low to effector/memory CD45RBlowCD44high stage. Maximum levels of upregulation are reached on recently activated CD69+ naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69+ CD45RBhighCD44low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS). In contrast, naive CD45RBhighCD44low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RBlow Tconvs, CD45RBlowFoxp3+ Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary, the different abilities of ATP-treated Tconvs to form pore or cleave CD62L depending on their activation and differentiation state suggests that P2X7R signaling varies according to the physiological role of T convs during antigen activation in secondary lymphoid organs or trafficking to inflammatory sites.


Asunto(s)
Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Linfocitos T Reguladores/inmunología , Adenosina Trifosfato/inmunología , Animales , Diferenciación Celular , Movimiento Celular , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Receptores de Hialuranos/metabolismo , Inmunidad Celular , Inmunofenotipificación , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2X7/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA