Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Thorax ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871464

RESUMEN

RATIONALE: Early natural menopause (early-M; <45 years of age) increases the risk of lung morbidities and mortalities in smokers. However, it is largely unknown whether early-M due to surgery demonstrates similar effects and whether menopausal hormone therapy (MHT) is protective against lung diseases. OBJECTIVES: To assess the associations of early-M and MHT with lung morbidities and mortalities using the prospective Prostate, Lung, Colorectal and Ovarian (PLCO) trial. METHODS: We estimated the risk among 69 706 postmenopausal women in the PLCO trial, stratified by menopausal types and smoking status. RESULTS: Early-M was associated with an increased risk of most lung disease and mortality outcomes in ever smokers with the highest risk seen for respiratory mortality (HR 1.98, 95% CI 1.34 to 2.92) in those with bilateral oophorectomy (BO). Early-M was positively associated with chronic bronchitis, and all-cause, non-cancer and respiratory mortality in never smokers with natural menopause or BO, with the highest risk seen for BO- respiratory mortality (HR 1.91, 95% CI 1.16 to 3.12). Ever MHT was associated with reduced all-cause, non-cancer and cardiovascular mortality across menopause types regardless of smoking status and was additionally associated with reduced risk of non-ovarian cancer, lung cancer (LC) and respiratory mortality in ever smokers. Among smokers, ever MHT use was associated with a reduction in HR for all-cause, non-cancer and cardiovascular mortality in a duration-dependent manner. CONCLUSIONS: Smokers with early-M should be targeted for smoking cessation and LC screening regardless of menopause types. MHT users had a lower likelihood of dying from LC and respiratory diseases in ever smokers.

2.
Stat Appl Genet Mol Biol ; 22(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37622330

RESUMEN

Permutation tests are widely used for statistical hypothesis testing when the sampling distribution of the test statistic under the null hypothesis is analytically intractable or unreliable due to finite sample sizes. One critical challenge in the application of permutation tests in genomic studies is that an enormous number of permutations are often needed to obtain reliable estimates of very small p-values, leading to intensive computational effort. To address this issue, we develop algorithms for the accurate and efficient estimation of small p-values in permutation tests for paired and independent two-group genomic data, and our approaches leverage a novel framework for parameterizing the permutation sample spaces of those two types of data respectively using the Bernoulli and conditional Bernoulli distributions, combined with the cross-entropy method. The performance of our proposed algorithms is demonstrated through the application to two simulated datasets and two real-world gene expression datasets generated by microarray and RNA-Seq technologies and comparisons to existing methods such as crude permutations and SAMC, and the results show that our approaches can achieve orders of magnitude of computational efficiency gains in estimating small p-values. Our approaches offer promising solutions for the improvement of computational efficiencies of existing permutation test procedures and the development of new testing methods using permutations in genomic data analysis.


Asunto(s)
Genómica , Proyectos de Investigación , Entropía , Algoritmos , Análisis de Datos
3.
Brief Bioinform ; 21(4): 1479-1486, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31588509

RESUMEN

Somatic mutation and gene expression dysregulation are considered two major tumorigenesis factors. While independent investigations of either factor pervade, studies of associations between somatic mutations and gene expression changes have been sporadic and nonsystematic. Utilizing genomic data collected from 11 315 subjects of 33 distinct cancer types, we constructed MutEx, a pan-cancer integrative genomic database. This database records the relationships among gene expression, somatic mutation and survival data for cancer patients. MutEx can be used to swiftly explore the relationship between these genomic/clinic features within and across cancer types and, more importantly, search for corroborating evidence for hypothesis inception. Our database also incorporated Gene Ontology and several pathway databases to enhance functional annotation, and elastic net and a gene expression composite score to aid in survival analysis. To demonstrate the usability of MutEx, we provide several application examples, including top somatic mutations associated with the most extensive expression dysregulation in breast cancer, differential mutational burden downstream of DNA mismatch repair gene mutations and composite gene expression score-based survival difference in breast cancer. MutEx can be accessed at http://www.innovebioinfo.com/Databases/Mutationdb_About.php.


Asunto(s)
Biología Computacional/métodos , Genómica , Neoplasias/genética , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Neoplasias/patología , Lenguajes de Programación , Análisis de Supervivencia
4.
Respir Res ; 23(1): 236, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076291

RESUMEN

BACKGROUND: The role of wood smoke (WS) exposure in the etiology of chronic obstructive pulmonary disease (COPD), lung cancer (LC), and mortality remains elusive in adults from countries with low ambient levels of combustion-emitted particulate matter. This study aims to delineate the impact of WS exposure on lung health and mortality in adults age 40 and older who ever smoked. METHODS: We assessed health impact of self-reported "ever WS exposure for over a year" in the Lovelace Smokers Cohort using both objective measures (i.e., lung function decline, LC incidence, and deaths) and two health related quality-of-life questionnaires (i.e., lung disease-specific St. George's Respiratory Questionnaire [SGRQ] and the generic 36-item short-form health survey). RESULTS: Compared to subjects without WS exposure, subjects with WS exposure had a more rapid decline of FEV1 (- 4.3 ml/s, P = 0.025) and FEV1/FVC ratio (- 0.093%, P = 0.015), but not of FVC (- 2.4 ml, P = 0.30). Age modified the impacts of WS exposure on lung function decline. WS exposure impaired all health domains with the increase in SGRQ scores exceeding the minimal clinically important difference. WS exposure increased hazard for incidence of LC and death of all-cause, cardiopulmonary diseases, and cancers by > 50% and shortened the lifespan by 3.5 year. We found no evidence for differential misclassification or confounding from socioeconomic status for the health effects of WS exposure. CONCLUSIONS: We identified epidemiological evidence supporting WS exposure as an independent etiological factor for the development of COPD through accelerating lung function decline in an obstructive pattern. Time-to-event analyses of LC incidence and cancer-specific mortality provide human evidence supporting the carcinogenicity of WS exposure.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Calidad de Vida , Adulto , Envejecimiento , Humanos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humo/efectos adversos , Fumadores , Madera/efectos adversos
5.
Am J Obstet Gynecol ; 227(6): 885.e1-885.e12, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35934119

RESUMEN

BACKGROUND: Early natural menopause has been regarded as a biomarker of reproductive and somatic aging. Cigarette smoking is the most harmful factor for lung health and also an established risk factor for early menopause. Understanding the effect of early menopause on health outcomes in middle-aged and older female smokers is important to develop preventive strategies. OBJECTIVE: This study aimed to examine the associations of early menopause with multiple lung health and aging biomarkers, lung cancer risk, and all-cause and cause-specific mortality in postmenopausal women who were moderate or heavy smokers. STUDY DESIGN: This study was conducted on postmenopausal women with natural (n=1038) or surgical (n=628) menopause from the Pittsburgh Lung Screening Study. The Pittsburgh Lung Screening Study is a community-based research cohort of current and former smokers, screened with low-dose computed tomography and followed up for lung cancer. Early menopause was defined as occurring before 45 years of age. The analyses were stratified by menopause types because of the different biological and medical causes of natural and surgical menopause. Statistical methods included linear model, generalized linear model, linear mixed-effects model, and time-to-event analysis. RESULTS: The average age of the 1666 female smokers was 59.4±6.7 years, with 1519 (91.2%) of the population as non-Hispanic Whites and 1064 (63.9%) of the population as current smokers at baseline. Overall, 646 (39%) women reported early menopause, including 198 (19.1%) women with natural menopause and 448 (71.3%) women with surgical menopause (P<.001). Demographic variables did not differ between early and nonearly menopause groups, regardless of menopause type. Significant associations were identified between early natural menopause and higher risk of wheezing (odds ratio, 1.65; P<.01), chronic bronchitis (odds ratio, 1.73; P<.01), and radiographic emphysema (odds ratio, 1.70; P<.001) and lower baseline lung spirometry in an obstructive pattern (-104.8 mL/s for forced expiratory volume in the first second with P<.01, -78.6 mL for forced vital capacity with P=.04, and -2.1% for forced expiratory volume in the first second-to-forced vital capacity ratio with P=.01). In addition, early natural menopause was associated with a more rapid decline of forced expiratory volume in the first second-to-forced vital capacity ratio (-0.16% per year; P=.01) and incident airway obstruction (odds ratio, 2.02; P=.04). Furthermore, women early natural menopause had a 40% increased risk of death (P=.023), which was mainly driven by respiratory diseases (hazard ratio, 2.32; P<.001). Mediation analyses further identified that more than 33.3% of the magnitude of the associations between early natural menopause and all-cause and respiratory mortality were explained by baseline forced expiratory volume in the first second. Additional analyses in women with natural menopause identified that the associations between continuous smoking and subsequent lung cancer risk and cancer mortality were moderated by early menopause status, and females with early natural menopause who continued smoking had the worst outcomes (hazard ratio, >4.6; P<.001). This study did not find associations reported above in female smokers with surgical menopause. CONCLUSION: Early natural menopause was found to be a risk factor for malignant and nonmalignant lung diseases and mortality in middle-aged and older female smokers. These findings have strong public health relevance as preventive strategies, including smoking cessation and chest computed tomography screening, should target this population (ie, female smokers with early natural menopause) to improve their postmenopausal health and well-being.


Asunto(s)
Neoplasias Pulmonares , Menopausia Prematura , Persona de Mediana Edad , Femenino , Humanos , Anciano , Masculino , Fumadores , Volumen Espiratorio Forzado , Pulmón , Menopausia
6.
PLoS Comput Biol ; 17(5): e1008976, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33945541

RESUMEN

Analyses of gene set differential coexpression may shed light on molecular mechanisms underlying phenotypes and diseases. However, differential coexpression analyses of conceptually similar individual studies are often inconsistent and underpowered to provide definitive results. Researchers can greatly benefit from an open-source application facilitating the aggregation of evidence of differential coexpression across studies and the estimation of more robust common effects. We developed Meta Gene Set Coexpression Analysis (MetaGSCA), an analytical tool to systematically assess differential coexpression of an a priori defined gene set by aggregating evidence across studies to provide a definitive result. In the kernel, a nonparametric approach that accounts for the gene-gene correlation structure is used to test whether the gene set is differentially coexpressed between two comparative conditions, from which a permutation test p-statistic is computed for each individual study. A meta-analysis is then performed to combine individual study results with one of two options: a random-intercept logistic regression model or the inverse variance method. We demonstrated MetaGSCA in case studies investigating two human diseases and identified pathways highly relevant to each disease across studies. We further applied MetaGSCA in a pan-cancer analysis with hundreds of major cellular pathways in 11 cancer types. The results indicated that a majority of the pathways identified were dysregulated in the pan-cancer scenario, many of which have been previously reported in the cancer literature. Our analysis with randomly generated gene sets showed excellent specificity, indicating that the significant pathways/gene sets identified by MetaGSCA are unlikely false positives. MetaGSCA is a user-friendly tool implemented in both forms of a Web-based application and an R package "MetaGSCA". It enables comprehensive meta-analyses of gene set differential coexpression data, with an optional module of post hoc pathway crosstalk network analysis to identify and visualize pathways having similar coexpression profiles.


Asunto(s)
Regulación de la Expresión Génica , Algoritmos , Biología Computacional/métodos , Redes Reguladoras de Genes , Humanos , Neoplasias/genética
7.
PLoS Comput Biol ; 16(6): e1007968, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32511223

RESUMEN

Very short tandem repeats bear substantial genetic, evolutional, and pathological significance in genome analyses. Here, we compiled a census of tandem mono-nucleotide/di-nucleotide/tri-nucleotide repeats (MNRs/DNRs/TNRs) in GRCh38, which we term "polytracts" in general. Of the human genome, 144.4 million nucleotides (4.7%) are occupied by polytracts, and 0.47 million single nucleotides are identified as polytract hinges, i.e., break-points of tandem polytracts. Preliminary exploration of the census suggested polytract hinge sites and boundaries of AAC polytracts may bear a higher mapping error rate than other polytract regions. Further, we revealed landscapes of polytract enrichment with respect to nearly a hundred genomic features. We found MNRs, DNRs, and TNRs displayed noticeable difference in terms of locational enrichment for miscellaneous genomic features, especially RNA editing events. Non-canonical and C-to-U RNA-editing events are enriched inside and/or adjacent to MNRs, while all categories of RNA-editing events are under-represented in DNRs. A-to-I RNA-editing events are generally under-represented in polytracts. The selective enrichment of non-canonical RNA-editing events within MNR adjacency provides a negative evidence against their authenticity. To enable similar locational enrichment analyses in relation to polytracts, we developed a software Polytrap which can handle 11 reference genomes. Additionally, we compiled polytracts of four model organisms into a Track Hub which can be integrated into USCS Genome Browser as an official track for convenient visualization of polytracts.


Asunto(s)
ADN/genética , Genoma Humano , Repeticiones de Microsatélite/genética , ARN/genética , Humanos , Edición de ARN , Programas Informáticos
8.
Alcohol Clin Exp Res ; 45(5): 979-995, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33682149

RESUMEN

BACKGROUND: Fetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. METHODS: In this study, we utilized an in vitro human pluripotent stem cell-based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester-equivalent cortical neurons. RESULTS: We used RNA sequencing of developing hPSC-derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell-type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling-associated transcripts observed in alcohol-exposed cultures relative to alcohol-naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain-related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90-4), indicating that these patterning alterations are not cell line-specific. CONCLUSIONS: We found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high-dose prenatal alcohol exposure, as well as patients with FAS.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Corteza Cerebral/efectos de los fármacos , Etanol/farmacología , Trastornos del Espectro Alcohólico Fetal/genética , Expresión Génica/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Orientación del Axón/efectos de los fármacos , Orientación del Axón/genética , Diferenciación Celular/genética , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Humanos , Técnicas In Vitro , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Células Madre Pluripotentes , Prosencéfalo/efectos de los fármacos , Prosencéfalo/embriología , Prosencéfalo/metabolismo , RNA-Seq , Vía de Señalización Wnt/genética
9.
Bioinformatics ; 35(14): 2441-2448, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30521030

RESUMEN

MOTIVATION: Small P-values are often required to be accurately estimated in large-scale genomic studies for the adjustment of multiple hypothesis tests and the ranking of genomic features based on their statistical significance. For those complicated test statistics whose cumulative distribution functions are analytically intractable, existing methods usually do not work well with small P-values due to lack of accuracy or computational restrictions. We propose a general approach for accurately and efficiently estimating small P-values for a broad range of complicated test statistics based on the principle of the cross-entropy method and Markov chain Monte Carlo sampling techniques. RESULTS: We evaluate the performance of the proposed algorithm through simulations and demonstrate its application to three real-world examples in genomic studies. The results show that our approach can accurately evaluate small to extremely small P-values (e.g. 10-6 to 10-100). The proposed algorithm is helpful for the improvement of some existing test procedures and the development of new test procedures in genomic studies. AVAILABILITY AND IMPLEMENTATION: R programs for implementing the algorithm and reproducing the results are available at: https://github.com/shilab2017/MCMC-CE-codes. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Análisis de Datos , Genómica , Algoritmos , Entropía , Genoma , Cadenas de Markov
10.
RNA Biol ; 17(11): 1666-1673, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31607216

RESUMEN

Non-coding RNAs occupy a significant fraction of the human genome. Their biological significance is backed up by a plethora of emerging evidence. One of the most robust approaches to demonstrate non-coding RNA's biological relevance is through their prognostic value. Using the rich gene expression data from The Cancer Genome Altas (TCGA), we designed Advanced Expression Survival Analysis (AESA), a web tool which provides several novel survival analysis approaches not offered by previous tools. In addition to the common single-gene approach, AESA computes the gene expression composite score of a set of genes for survival analysis and utilizes permutation test or cross-validation to assess the significance of log-rank statistic and the degree of over-fitting. AESA offers survival feature selection with post-selection inference and utilizes expanded TCGA clinical data including overall, disease-specific, disease-free, and progression-free survival information. Users can analyse either protein-coding or non-coding regions of the transcriptome. We demonstrated the effectiveness of AESA using several empirical examples. Our analyses showed that non-coding RNAs perform as well as messenger RNAs in predicting survival of cancer patients. These results reinforce the potential prognostic value of non-coding RNAs. AESA is developed as a module in the freely accessible analysis suite MutEx. Abbreviation: ACC: Adrenocortical Carcinoma (n = 92); BLCA: Bladder Urothelial Carcinoma (n = 412); BRCA: Breast Invasive Carcinoma (n = 1098); CESC: Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (n = 307); CHOL: Cholangiocarcinoma (n = 51); COAD: Colon Adenocarcinoma (n = 461); DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (n = 58); ESCA: Oesophageal Carcinoma (n = 185); GBM: Glioblastoma Multiforme (n = 617); HNSC: Head and Neck Squamous Cell Carcinoma (n = 528); KICH: Kidney Chromophobe (n = 113); KIRC: Kidney Renal Clear Cell Carcinoma (n = 537); KIRP: Kidney Renal Papillary Cell Carcinoma (n = 291); LAML: Acute Myeloid Leukaemia (n = 200); LGG: Brain Lower Grade Glioma (n = 516); LIHC: Liver Hepatocellular Carcinoma (n = 377); LUAD: Lung Adenocarcinoma (n = 585); LUSC: Lung Squamous Cell Carcinoma (n = 504); MESO: Mesothelioma (n = 87); OV: Ovarian Serous Cystadenocarcinoma (n = 608) PAAD: Pancreatic Adenocarcinoma (n = 185); PCPG: Pheochromocytoma and Paraganglioma (n = 179); PRAD: Prostate Adenocarcinoma (n = 500); READ: Rectum Adenocarcinoma (n = 172); SARC: Sarcoma (n = 261); SKCM: Skin Cutaneous Melanoma (n = 470); STAD: Stomach Adenocarcinoma (n = 443); TGCT: Testicular Germ Cell Tumours (n = 150); THCA: Thyroid Carcinoma (n = 507) THYM: Thymoma (n = 124); UCEC: Uterine Corpus Endometrial Carcinoma (n = 560); UCS: Uterine Carcinosarcoma (n = 57); UVM: Uveal Melanoma (n = 80).


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/mortalidad , ARN no Traducido/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Pronóstico , ARN Largo no Codificante/genética
11.
Cancer Sci ; 110(6): 1931-1946, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30974024

RESUMEN

Activating mutations in cytokine receptors and transcriptional regulators govern aberrant signal transduction in T-cell lineage acute lymphoblastic leukemia (T-ALL). However, the roles played by suppressors of cytokine signaling remain incompletely understood. We examined the regulatory roles of suppressor of cytokine signaling 5 (SOCS5) in T-ALL cellular signaling networks and leukemia progression. We found that SOCS5 was differentially expressed in primary T-ALL and its expression levels were lowered in HOXA-deregulated leukemia harboring KMT2A gene rearrangements. Here, we report that SOCS5 expression is epigenetically regulated by DNA methyltransferase-3A-mediated DNA methylation and methyl CpG binding protein-2-mediated histone deacetylation. We show that SOCS5 negatively regulates T-ALL cell growth and cell cycle progression but has no effect on apoptotic cell death. Mechanistically, SOCS5 silencing induces activation of JAK-STAT signaling, and negatively regulates interleukin-7 and interleukin-4 receptors. Using a human T-ALL murine xenograft model, we show that genetic inactivation of SOCS5 accelerates leukemia engraftment and progression, and leukemia burden. We postulate that SOCS5 is epigenetically deregulated in T-ALL and serves as an important regulator of T-ALL cell proliferation and leukemic progression. Our results link aberrant downregulation of SOCS5 expression to the enhanced activation of the JAK-STAT and cytokine receptor-signaling cascade in T-ALL.


Asunto(s)
Epigénesis Genética , Quinasas Janus/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Factores de Transcripción STAT/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Animales , Línea Celular , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Quinasas Janus/metabolismo , Células Jurkat , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Tratamiento con ARN de Interferencia/métodos , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
12.
Mod Pathol ; 28(4): 545-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25431238

RESUMEN

Recent studies have shown that immunohistochemical evaluation of MYC protein expression in diffuse large B-cell lymphoma is a useful prognostic tool with high concordance rate among pathologists. Concordance in these studies was assessed among few pathologists from one institution by scoring tissue microarrays. In daily practice, MYC evaluation is performed on entire tumor sections by a diverse group of pathologists. In our study, nine hematopathologists from two institutions scored whole-tissue sections of two sets of cases. The training set included 13 cases of diffuse large B-cell lymphoma and 4 cases of Burkitt lymphoma. The validation set included 18 cases of diffuse large B-cell lymphoma and 1 case of Burkitt lymphoma. MYC positivity was defined as ≥40% of tumor cells demonstrating nuclear staining similar to prior studies. The mean score for each case was used to determine MYC status with discrepant cases defined as having any score causing a different MYC status designation. Discrepant cases from the training set were characterized by staining heterogeneity, extensive necrosis or crush artifact and had mean scores within 15 percentage points of 40%. Cases from the validation set that demonstrated any of these features were scored twice on two different days. Overall concordance was moderate (Kappa score: 0.68, P-value<0.001) with no significant change between the two sets (Kappa scores: 0.69 vs 0.67). Thirty-nine percent of cases were discrepant. The findings indicate that a significant number of diffuse large B-cell lymphomas are inherently difficult to score due to staining heterogeneity. The effect of heterogeneity can be under-represented when concordance is measured among few pathologists scoring tissue microarrays. Careful scoring strategy in our study failed to improve concordance. In the absence of specific instructions on how to deal with heterogeneity, caution is advised when evaluating MYC expression in diffuse large B-cell lymphoma.


Asunto(s)
Linfoma de Burkitt/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfoma de Burkitt/patología , Humanos , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/patología , Reproducibilidad de los Resultados
13.
Blood ; 121(3): 485-8, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23212523

RESUMEN

One recently identified subtype of pediatric B-precursor acute lymphoblastic leukemia (ALL) has been termed BCR-ABL1-like or Ph-like because of similarity of the gene expression profile to BCR-ABL1 positive ALL suggesting the presence of lesions activating tyrosine kinases, frequent alteration of IKZF1, and poor outcome. Prior studies demonstrated that approximately half of these patients had genomic lesions leading to CRLF2 overexpression, with half of such cases harboring somatic mutations in the Janus kinases JAK1 and JAK2. To determine whether mutations in other tyrosine kinases might also occur in ALL, we sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with either a Ph-like gene expression profile or other alterations suggestive of activated kinase signaling. Aside from JAK mutations and 1 FLT3 mutation, no somatic mutations were found in any other tyrosine kinases, suggesting that alternative mechanisms are responsible for activated kinase signaling in high-risk ALL.


Asunto(s)
Regulación Leucémica de la Expresión Génica/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Quinasas/genética , Transcriptoma , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Masculino , Neoplasia Residual/enzimología , Neoplasia Residual/genética , Neoplasia Residual/mortalidad , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Proteínas Tirosina Quinasas/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo , Transducción de Señal/genética , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
14.
Blood ; 119(8): 1872-81, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-22210879

RESUMEN

Gene expression profiling was performed on 97 cases of infant ALL from Children's Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expression was found in a group of infants with excellent outcome (n = 11; 5-year EFS of 100%), whereas differential expression of IRX2 and TACC2 partitioned the remaining infants into 2 groups with significantly different survivals (5-year EFS of 16% vs 64%; P < .001). When infants with MLL-AFF1 were analyzed separately, a 7-gene classifier was developed that split them into 2 distinct groups with significantly different outcomes (5-year EFS of 20% vs 65%; P < .001). In this classifier, elevated expression of NEGR1 was associated with better EFS, whereas IRX2, EPS8, and TPD52 expression were correlated with worse outcome. This classifier also predicted EFS in an independent infant ALL cohort from the Interfant-99 trial. When evaluating expression profiles as a continuous variable relative to patient age, we further identified striking differences in profiles in infants less than or equal to 90 days of age and those more than 90 days of age. These age-related patterns suggest different mechanisms of leukemogenesis and may underlie the differential outcomes historically seen in these age groups.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas Portadoras/genética , Análisis por Conglomerados , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Femenino , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Modelos Genéticos , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pronóstico , Factores de Transcripción/genética , Factores de Elongación Transcripcional , Resultado del Tratamiento , Proteínas Supresoras de Tumor/genética , Tirosina Quinasa 3 Similar a fms/genética
15.
Blood ; 119(15): 3512-22, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22368272

RESUMEN

As controversy exists regarding the prognostic significance of genomic rearrangements of CRLF2 in pediatric B-precursor acute lymphoblastic leukemia (ALL) classified as standard/intermediate-risk (SR) or high-risk (HR), we assessed the prognostic significance of CRLF2 mRNA expression, CRLF2 genomic lesions (IGH@-CRLF2, P2RY8-CRLF2, CRLF2 F232C), deletion/mutation in genes frequently associated with high CRLF2 expression (IKZF1, JAK, IL7R), and minimal residual disease (MRD) in 1061 pediatric ALL patients (499 HR and 562 SR) on COG Trials P9905/P9906. Whereas very high CRLF2 expression was found in 17.5% of cases, only 51.4% of high CRLF2 expressors had CRLF2 genomic lesions. The mechanism underlying elevated CRLF2 expression in cases lacking known genomic lesions remains to be determined. All CRLF2 genomic lesions and virtually all JAK mutations were found in high CRLF2 expressors, whereas IKZF1 deletions/mutations were distributed across the full cohort. In multivariate analyses, NCI risk group, MRD, high CRLF2 expression, and IKZF1 lesions were associated with relapse-free survival. Within HR ALL, only MRD and CRLF2 expression predicted a poorer relapse-free survival; no difference was seen between cases with or without CRLF2 genomic lesions. Thus, high CRLF2 expression is associated with a very poor outcome in high-risk, but not standard-risk, ALL. This study is registered at www.clinicaltrials.gov as NCT00005596 and NCT00005603.


Asunto(s)
Factor de Transcripción Ikaros/genética , Quinasas Janus/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Receptores de Citocinas/genética , Adolescente , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Niño , Preescolar , Ensayos Clínicos como Asunto , Femenino , Humanos , Lactante , Masculino , Oncología Médica/organización & administración , Modelos Estadísticos , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Pronóstico , Sociedades Médicas , Análisis de Supervivencia , Resultado del Tratamiento
16.
Int J Gynecol Pathol ; 33(4): 402-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24901400

RESUMEN

Ovarian cancer is the leading cause of death from gynecologic cancers in the United States. Failure may be due to variable expression and/or complex interactions of growth factor receptors in individual tumors. As ErbB3-MET cooperativity is implicated in solid tumor resistance to EGFR/ErbB2 inhibitors, we evaluated expression of MET and all 4 ErbB family members in ovarian cancers. Tissue arrays were prepared from archival formalin-fixed paraffin-embedded tumor samples, including 202 ovarian carcinomas (Stage I-IV) and controls. Of 202 patient samples, only 25% were positive for EGFR and 35% for ErbB2 expression. ErbB3, ErbB4, and MET showed marked expression in 76%, 98%, and 96% of cases. Consistent with high incidence, there was no significant correlation for expression of ErbB3, ErbB4, or MET with outcome. On the basis of their high expression in the majority of cases, inhibitors targeting ErbB3, ErbB4, and/or MET may be broadly applicable as therapeutic agents in this disease.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/patología , Pronóstico , Análisis de Matrices Tisulares
17.
Toxicol Sci ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745431

RESUMEN

The ubiquitous existence of microplastics and nanoplastics raises concerns about their potential impact on the human reproductive system. Limited data exists on microplastics within the human reproductive system and their potential consequences on sperm quality. Our objectives were to quantify and characterize the prevalence and composition of microplastics within both canine and human testes and investigate potential associations with the sperm count, and weights of testis and epididymis. Using advanced sensitive Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS), we quantified 12 types of microplastics within 47 canine and 23 human testes. Data on reproductive organ weights, and sperm count in dogs were collected. Statistical analyses, including descriptive analysis, correlational analysis, and multivariate linear regression analyses were applied to investigate the association of microplastics with reproductive functions. Our study revealed the presence of microplastics in all canine and human testes, with significant inter-individual variability. Mean total microplastic levels were 122.63 µg/g in dogs and 328.44 µg/g in humans. Both humans and canines exhibit relatively similar proportions of the major polymer types, with PE being dominant. Furthermore, a negative correlation between specific polymers such as PVC and PET and the normalized weight of the testis was observed. These findings highlight the pervasive presence of microplastics in the male reproductive system in both canine and human testes, with potential consequences on male fertility.

18.
Antiviral Res ; 216: 105667, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429527

RESUMEN

Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades and beyond. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in three-dimensional tissue cultures. Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo. We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses reveal that inhibition of MEK/ERK signaling reduces E6/E7 mRNA, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent antiviral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies.


Asunto(s)
Neoplasias , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Animales , Ratones , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Virus del Papiloma Humano , Carcinogénesis , Quinasas de Proteína Quinasa Activadas por Mitógenos , Papillomaviridae/genética , Proteínas Oncogénicas Virales/metabolismo
19.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993217

RESUMEN

Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for most infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in vitro . Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo . We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses revealed that inhibition of MEK/ERK signaling reduces E6/E7 mRNAs, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent anti-viral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies. Significance Statement: Persistent human papillomavirus (HPV) infections cause significant morbidity and oncogenic HPV infections can progress to anogenital and oropharyngeal cancers. Despite the availability of effective prophylactic HPV vaccines, millions of unvaccinated individuals, and those currently infected will develop HPV-related diseases over the next two decades and beyond. Thus, it remains critical to identify effective antivirals against papillomaviruses. Using a mouse papillomavirus model of HPV infection, this study reveals that cellular MEK1/2 signaling supports viral tumorigenesis. The MEK1/2 inhibitor, trametinib, demonstrates potent antiviral activities and promotes tumor regression. This work provides insight into the conserved regulation of papillomavirus gene expression by MEK1/2 signaling and reveals this cellular pathway as a promising therapeutic target for the treatment of papillomavirus diseases.

20.
Cancers (Basel) ; 15(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36900183

RESUMEN

Adenoid cystic carcinoma (ACC) is an aggressive malignancy that most often arises in salivary or lacrimal glands but can also occur in other tissues. We used optimized RNA-sequencing to analyze the transcriptomes of 113 ACC tumor samples from salivary gland, lacrimal gland, breast or skin. ACC tumors from different organs displayed remarkedly similar transcription profiles, and most harbored translocations in the MYB or MYBL1 genes, which encode oncogenic transcription factors that may induce dramatic genetic and epigenetic changes leading to a dominant 'ACC phenotype'. Further analysis of the 56 salivary gland ACC tumors led to the identification of three distinct groups of patients, based on gene expression profiles, including one group with worse survival. We tested whether this new cohort could be used to validate a biomarker developed previously with a different set of 68 ACC tumor samples. Indeed, a 49-gene classifier developed with the earlier cohort correctly identified 98% of the poor survival patients from the new set, and a 14-gene classifier was almost as accurate. These validated biomarkers form a platform to identify and stratify high-risk ACC patients into clinical trials of targeted therapies for sustained clinical response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA