Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(12): 2736-2754.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38016467

RESUMEN

Extensive studies demonstrate the importance of the STING1 (also known as STING) protein as a signaling hub that coordinates immune and autophagic responses to ectopic DNA in the cytoplasm. Here, we report a nuclear function of STING1 in driving the activation of the transcription factor aryl hydrocarbon receptor (AHR) to control gut microbiota composition and homeostasis. This function was independent of DNA sensing and autophagy and showed competitive inhibition with cytoplasmic cyclic guanosine monophosphate (GMP)-AMP synthase (CGAS)-STING1 signaling. Structurally, the cyclic dinucleotide binding domain of STING1 interacted with the AHR N-terminal domain. Proteomic analyses revealed that STING1-mediated transcriptional activation of AHR required additional nuclear partners, including positive and negative regulatory proteins. Although AHR ligands could rescue colitis pathology and dysbiosis in wild-type mice, this protection was abrogated by mutational inactivation of STING1. These findings establish a key framework for understanding the nuclear molecular crosstalk between the microbiota and the immune system.


Asunto(s)
Proteómica , Receptores de Hidrocarburo de Aril , Animales , Ratones , ADN , Homeostasis , Intestinos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
2.
Immunol Rev ; 321(1): 199-210, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37424139

RESUMEN

Ferroptosis is a form of iron-dependent regulated cell death characterized by the accumulation of toxic lipid peroxides, particularly in the plasma membrane, leading to lytic cell death. While it plays a crucial role in maintaining the overall health and proper functioning of multicellular organisms, it can also contribute to tissue damage and pathological conditions. Although ferroptotic damage is generally recognized as an immunostimulatory process associated with the release of damage-associated molecular patterns (DAMPs), the occurrence of ferroptosis in immune cells or the release of immunosuppressive molecules can result in immune tolerance. Consequently, there is ongoing exploration of targeting the upstream signals or the machinery of ferroptosis to therapeutically enhance or inhibit the immune response. In addition to introducing the core molecular mechanisms of ferroptosis, we will focus on the immune characteristics of ferroptosis in pathological conditions, particularly in the context of infection, sterile inflammation, and tumor immunity.


Asunto(s)
Ferroptosis , Humanos , Muerte Celular , Tolerancia Inmunológica , Terapia de Inmunosupresión , Inmunización
3.
Trends Immunol ; 45(4): 274-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494365

RESUMEN

Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.


Asunto(s)
Inmunidad Innata , Lipopolisacáridos , Animales , Humanos , Inflamasomas/metabolismo , Caspasas/metabolismo , Mamíferos
4.
J Immunol ; 211(4): 518-526, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549395

RESUMEN

Immunometabolism is an interdisciplinary field that focuses on the relationship between metabolic pathways and immune responses. Dysregulated immunometabolism contributes to many pathological settings, such as cytokine storm or immune tolerance. Aconitate decarboxylase 1 (ACOD1, also known as immunoresponsive gene 1), the mitochondrial enzyme responsible for catalyzing itaconate production, was originally identified as a bacterial LPS-inducible gene involved in innate immunity in mouse macrophages. We now know that the upregulation of ACOD1 expression in immune or nonimmune cells plays a context-dependent role in metabolic reprogramming, signal transduction, inflammasome regulation, and protein modification. The emerging function of ACOD1 in inflammation and infection is a double-edged sword. In this review, we discuss how ACOD1 regulates anti-inflammatory or proinflammatory responses in an itaconate-dependent or -independent manner. Further understanding of ACOD1 expression and function may pave the way for the development of precision therapies for inflammatory diseases.


Asunto(s)
Macrófagos , Succinatos , Animales , Ratones , Inmunidad Innata , Inflamación
5.
Carcinogenesis ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008332

RESUMEN

Alkaliptosis, a form of regulated cell death, is characterized by lysosomal dysfunction and intracellular pH alkalinization. The pharmacological induction of alkaliptosis using the small molecule compound JTC801 has emerged as a promising anticancer strategy in various types of cancers, particularly pancreatic ductal adenocarcinoma (PDAC). In this study, we investigate a novel mechanism by which macropinocytosis, an endocytic process involving the uptake of extracellular material, promotes resistance to alkaliptosis in human PDAC cells. Through lipid metabolomics analysis and functional studies, we demonstrate that the inhibition of alkaliptosis by fatty acids, such as oleic acid, is not dependent on endogenous synthetic pathways but rather on exogenous uptake facilitated by macropinocytosis. Consequently, targeting macropinocytosis through pharmacological approaches (e.g., using EIPA or EHoP-016) or genetic interventions (e.g., RAC1 knockdown) effectively enhances JTC801-induced alkaliptosis in human PDAC cells. These findings provide compelling evidence that the modulation of macropinocytosis can increase the sensitivity of cancer cells to alkaliptosis inducers.

6.
Mol Cancer ; 23(1): 89, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702722

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
7.
Mol Carcinog ; 63(8): 1515-1527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38751020

RESUMEN

Paclitaxel serves as the cornerstone chemotherapy for ovarian cancer, yet its prolonged administration frequently culminates in drug resistance, presenting a substantial challenge. Here we reported that inducing alkaliptosis, rather than apoptosis or ferroptosis, effectively overcomes paclitaxel resistance. Mechanistically, ATPase H+ transporting V0 subunit D1 (ATP6V0D1), a key regulator of alkaliptosis, plays a pivotal role by mediating the downregulation of ATP-binding cassette subfamily B member 1 (ABCB1), a multidrug resistance protein. Both ATP6V0D1 overexpression through gene transfection and pharmacological enhancement of ATP6V0D1 protein stability using JTC801 effectively inhibit ABCB1 upregulation, resulting in growth inhibition in drug-resistant cells. Additionally, increasing intracellular pH to alkaline (pH 8.5) via sodium hydroxide application suppresses ABCB1 expression, whereas reducing the pH to acidic conditions (pH 6.5) with hydrochloric acid amplifies ABCB1 expression in drug-resistant cells. Collectively, these results indicate a potentially effective therapeutic strategy for targeting paclitaxel-resistant ovarian cancer by inducing ATP6V0D1-dependent alkaliptosis.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Resistencia a Antineoplásicos , Neoplasias Ováricas , Paclitaxel , ATPasas de Translocación de Protón Vacuolares , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Proliferación Celular/efectos de los fármacos
8.
Hepatology ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37013919

RESUMEN

The most widespread type of liver cancer, HCC, is associated with disabled cellular death pathways. Despite therapeutic advancements, resistance to current systemic treatments (including sorafenib) compromises the prognosis of patients with HCC, driving the search for agents that might target novel cell death pathways. Ferroptosis, a form of iron-mediated nonapoptotic cell death, has gained considerable attention as a potential target for cancer therapy, especially in HCC. The role of ferroptosis in HCC is complex and diverse. On one hand, ferroptosis can contribute to the progression of HCC through its involvement in both acute and chronic liver conditions. In contrast, having ferroptosis affect HCC cells might be desirable. This review examines the role of ferroptosis in HCC from cellular, animal, and human perspectives while examining its mechanisms, regulation, biomarkers, and clinical implications.

9.
Trends Immunol ; 42(6): 508-522, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33906793

RESUMEN

Sepsis and septic shock driven by microbial infections are still among the most challenging health problems, causing 11 million deaths worldwide every year. How does the host's response to pathogen infections effectively restore homeostasis instead of precipitating pathogenic and potentially fatal feedforward reactions? Recently, there have been significant new advances in our understanding of the interface between mammalian immunity and coagulation ('immunocoagulation') and its impact on sepsis. In particular, the release and activation of F3 (the main initiator of coagulation) from and on myeloid or epithelial cells is facilitated by activating inflammasomes and consequent gasdermin D (GSDMD)-mediated pyroptosis, coupled to signaling via high mobility group box 1 (HMGB1), stimulator of interferon response CGAMP interactor 1 (STING1), or sequestosome 1 (SQSTM1). Pharmacological modulation of the immunocoagulation pathways emerge as novel and potential therapeutic strategies for sepsis.


Asunto(s)
Sepsis , Choque Séptico , Animales , Caspasas Iniciadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Unión a Fosfato , Piroptosis
10.
Ann Hematol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775949

RESUMEN

Some aplastic anemia(AA) patients only have partial hematological responses after immunosuppressive therapy. Failure to achieve complete normalization of blood counts, particularly hemoglobin, will reduce their quality of life. This open-label pilot study was conducted to evaluate the efficacy and safety of roxadustat in this setting. A total of 14 patients with AA who had inadequate erythroid response after immunosuppressive therapy were included in the study. The primary efficacy endpoint was hemoglobin response at week 8 after roxadustat treatment. The median duration of roxadustat therapy was 14 (4-30) weeks, with 12 patients receiving roxadustat for ≥ 8 weeks. At week 8, nine patients (9/14, 64.3%) had their hemoglobin rising for at least 15 g/L, with two patients (2/14, 14.3%) achieving normal hemoglobin levels. By the last follow-up, hemoglobin responses were observed in 10 patients (10/14, 71.4%), with 4 patients(4/14, 28.6%) having normal hemoglobin levels. Roxadustat was tapered or discontinued in four responded patients; one relapsed after 12 weeks of tapering, and three maintained their response. Four patients (4/14, 28.6%) experienced mild adverse effects during therapy. Roxadustat is safe and well tolerated by patients with AA. Treatment with the hypoxia-inducible factor prolyl hydroxylase inhibitor improves hemoglobin levels in AA patients with inadequate erythroid responses.

11.
Chem Rev ; 122(3): 3459-3636, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34995461

RESUMEN

Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Aniones , Cationes , Sondas Moleculares/química , Nanopartículas/química
12.
Arch Toxicol ; 98(4): 1025-1041, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383612

RESUMEN

Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Regulación de la Expresión Génica , Apoptosis , Estrés del Retículo Endoplásmico , Neoplasias/tratamiento farmacológico , Neoplasias/genética
13.
Int J Cancer ; 152(1): 7-14, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362560

RESUMEN

We aimed to determine participation in low-dose computed tomography (LDCT) of individuals with a family history of common cancers in a population-based screening program to provide timely evidence in high-risk populations in China. The analysis was conducted using data from the Cancer Screening Program in Urban China (CanSPUC), which recruited 282 377 participants aged 40 to 74 years from eight cities in the Henan province. Using the CanSPUC risk score system, 55 428 participants were evaluated to have high risk for lung cancer and were recommended for LDCT. We calculated the overall and group-specific participation rates using family history of common cancers and compared differences in participation rates between different groups. Odds ratios (ORs) and 95% confidence intervals were derived by multivariable logistic regression. Of the 55 428 participants, 22 260 underwent LDCT (participation rate, 40.16%). Family history of lung, esophageal, stomach, liver and colorectal cancer was associated with increased participation in LDCT screening. The odds of participants with a family history of one, two, three and four or more cancer cases undergoing LDCT screening were 1.9, 2.7, 2.8 and 3.5 times, respectively, than those without a family history of cancer. Compared to those without a history of cancer, participation in LDCT gradually increased as the number of cancer cases in the family increased (P < .001). Our findings suggest that there is room for improvement in lung cancer screening given the relatively low participation rate. Lung cancer screening in populations with a family history of cancer may improve efficiency and cost-effectiveness; however, this requires further verification.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/epidemiología , Tomografía Computarizada por Rayos X/métodos , Tamizaje Masivo , China/epidemiología
14.
Cytokine ; 169: 156317, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542833

RESUMEN

Inflammation represents a fundamental immune response triggered by various detrimental stimuli, such as infections, tissue damage, toxins, and foreign substances. Protein degradation plays a crucial role in regulating the inflammatory process at multiple levels. The identification of sequestosome 1 (SQSTM1, also known as p62) protein as a binding partner of lymphocyte-specific protein tyrosine kinase in 1995 marked a significant milestone. Subsequent investigations unveiled the activity of SQSTM1 to interact with diverse unstructured substrates, including proteins, organelles, and pathogens, facilitating their delivery to the lysosome for autophagic degradation. In addition to its well-established intracellular functions, emerging studies have reported the active secretion or passive release of SQSTM1 by immune or non-immune cells, orchestrating the inflammatory responses. These distinct characteristics render SQSTM1 a critical therapeutic target in numerous human diseases, including infectious diseases, rheumatoid arthritis, inflammatory bowel disease, pancreatitis, asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. This review provides a comprehensive overview of the structure and modulation of SQSTM1, discusses its intracellular and extracellular roles in inflammation, and highlights its significance in inflammation-related diseases. Future investigations focusing on elucidating the precise localization, structure, post-translational modifications of SQSTM1, as well as the identification of additional interacting partners, hold promise for unravelling further insights into the multifaceted functions of SQSTM1.


Asunto(s)
Inflamación , Proteínas , Humanos , Proteína Sequestosoma-1/metabolismo , Inflamación/metabolismo , Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Autofagia
15.
Mol Ther ; 30(1): 283-294, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34298129

RESUMEN

Prime editor (PE), a new genome editing tool, can generate all 12 possible base-to-base conversions, insertion, and deletion of short fragment DNA. PE has the potential to correct the majority of known human genetic disease-related mutations. Adeno-associated viruses (AAVs), the safe vector widely used in clinics, are not capable of delivering PE (∼6.3 kb) in a single vector because of the limited loading capacity (∼4.8 kb). To accommodate the loading capacity of AAVs, we constructed four split-PE (split-PE994, split-PE1005, split-PE1024, and split-PE1032) using Rma intein (Rhodothermus marinus). With the use of a GFP-mutated reporter system, PE reconstituting activities were screened, and two efficient split-PEs (split-PE1005 and split-PE1024) were identified. We then demonstrated that split-PEs delivered by dual-AAV1, especially split-PE1024, could mediate base transversion and insertion at four endogenous sites in human cells. To test the performance of split-PE in vivo, split-PE1024 was then delivered into the adult mouse retina by dual-AAV8. We demonstrated successful editing of Dnmt1 in adult mouse retina. Our study provides a new method to deliver PE to adult tissue, paving the way for in vivo gene-editing therapy using PE.


Asunto(s)
Dependovirus , Edición Génica , Animales , ADN , Dependovirus/genética , Edición Génica/métodos , Vectores Genéticos/genética , Inteínas/genética , Ratones , Mutación
16.
Biochem Biophys Res Commun ; 606: 68-74, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35339754

RESUMEN

Cyclophosphamide is an alkylating agent used to treat a variety of cancers, including leukemia. Here, we show a previously unrecognized role of cyclophosphamide in triggering the protein degradation of glutathione peroxidase 4 (GPX4), a phospholipid hydroperoxidase that protects cells from oxidative damage. Mechanistically, we found that the ubiquitin-proteasome system, but not autophagy, mediates cyclophosphamide-induced degradation of GPX4 in human leukemia cell lines. Surprisingly, cyclophosphamide-induced degradation of GPX4 leads to caspase-independent parthanatos, but not lipid peroxidation-mediated ferroptosis, through the nuclear translocation of apoptosis-inducing factor mitochondria-associated 1 (AIFM1). Consequently, the overexpression of GPX4 or the knockdown of AIFM1 limits the anticancer activity of cyclophosphamide in vitro and in xenograft tumor models. These findings establish a new framework for understanding the central role of GPX4 in blocking oxidative cell death.


Asunto(s)
Factor Inductor de la Apoptosis , Ferroptosis , Leucemia , Parthanatos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Factor Inductor de la Apoptosis/metabolismo , Línea Celular Tumoral , Ciclofosfamida/farmacología , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
17.
PLoS Pathog ; 16(5): e1008536, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32442210

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that has caused a worldwide pandemic of the human respiratory illness COVID-19, resulting in a severe threat to public health and safety. Analysis of the genetic tree suggests that SARS-CoV-2 belongs to the same Betacoronavirus group as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Although the route for viral transmission remains a mystery, SARS-CoV-2 may have originated in an animal reservoir, likely that of bat. The clinical features of COVID-19, such as fever, cough, shortness of breath, and fatigue, are similar to those of many acute respiratory infections. There is currently no specific treatment for COVID-19, but antiviral therapy combined with supportive care is the main strategy. Here, we summarize recent progress in understanding the epidemiological, virological, and clinical characteristics of COVID-19 and discuss potential targets with existing drugs for the treatment of this emerging zoonotic disease.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Neumonía Viral/epidemiología , Neumonía Viral/terapia , Animales , Betacoronavirus/clasificación , COVID-19 , Infecciones por Coronavirus/fisiopatología , Genoma Viral , Humanos , Pandemias , Neumonía Viral/fisiopatología , SARS-CoV-2 , Zoonosis/epidemiología , Zoonosis/virología
18.
Immunol Invest ; 51(6): 1804-1819, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35404706

RESUMEN

OBJECTIVE: This study aims to elucidate the changes in the percentage of GPR56 and/or granzyme B (GZMB) positive cells in rheumatoid arthritis (RA) CD4 and CD8 T lymphocytes, and to explore their clinical value in diagnosing and reflecting the progression of RA. METHODS: The percentages of GPR56 and/or GZMB positive cells were analyzed in peripheral blood (PB) and spleen T cells in a collagen-induced arthritis (CIA) model established in DBA/1 mice. The percentages of GPR56+ and/or GZMB+ cells were further analyzed in PBs from RA patients and healthy controls. Correlation analysis was performed between clinical indicators and GPR56+, GZMB+, and GPR56+ GZMB+ T cells. Receiver operating characteristic (ROC) curves were used to evaluate the value of GPR56 and GZMB in differentiating active and stable remitting RA. RESULTS: GPR56+ levels were increased in CD4 and CD8 T cells in the PB of CIA mice. The percentages of GPR56+ and GZMB+ cells were increased in both CD4 and CD8 T cell subsets in patients with active RA. GPR56+, GZMB+, and GPR56+ GZMB+ cells were positively correlated with rheumatoid factor and DAS28. ROC analysis revealed that AUCs for GPR56+, GZMB+, and GPR56+ GZMB+ cell percentages to distinguish active RA from stable remission RA were 0.7106, 0.6941, 0.7024, with cut-off values of 16.35, 16.40, 14.80 in CD4 + T cells, and 0.8031, 0.8086, 0.8196 with cut-off values 60.25, 62.15, 40.15 in CD8 + T cells, respectively. CONCLUSIONS: GPR56+ and/or GZMB+ T cells are up-regulated in patients with active RA and reflect their condition. The detection of GPR56 and GZMB is helpful for RA disease assessment.


Asunto(s)
Artritis Reumatoide , Linfocitos T Citotóxicos , Animales , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/inmunología , Linfocitos T CD4-Positivos , Progresión de la Enfermedad , Citometría de Flujo , Humanos , Ratones , Ratones Endogámicos DBA , Receptores Acoplados a Proteínas G
19.
J Immunol ; 205(5): 1189-1197, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32839211

RESUMEN

Thermal injury is often associated with a proinflammatory state resulting in serious complications. After a burn, the innate immune system is activated with subsequent immune cell infiltration and cytokine production. Although the innate immune response is typically beneficial, an excessive activation leads to cytokine storms, multiple organ failure, and even death. This overwhelming immune response is regulated by damage-associated molecular patterns (DAMPs). DAMPs are endogenous molecules that are actively secreted by immune cells or passively released by dead or dying cells that can bind to pathogen recognition receptors in immune and nonimmune cells. Recent studies involving animal models along with human studies have drawn great attention to the possible pathological role of DAMPs as an immune consequence of thermal injury. In this review, we outline DAMPs and their function in thermal injury, shedding light on the mechanism of sterile inflammation during tissue injury and identifying new immune targets for treating thermal injury.


Asunto(s)
Quemaduras/inmunología , Sistema Inmunológico/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Animales , Síndrome de Liberación de Citoquinas/inmunología , Humanos
20.
Acta Pharmacol Sin ; 43(3): 541-551, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34035485

RESUMEN

We previously showed that oral administration of exogenous glutathione (GSH) exerted a direct and/or indirect therapeutic effect on ischemic stroke rats, but the underlying mechanisms remain elusive. In the current study, we conducted a quantitative proteomic analysis to explore the pathways mediating the therapeutic effect of GSH in cerebral ischemia/reperfusion (I/R) model rats. Rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion. The rats were treated with GSH (250 mg/kg, ig) or levodopa (L-dopa, 100 mg/kg, ig) plus carbidopa (10 mg/kg, ig). Neurologic deficits were assessed, and the rats were sacrificed at 24 h after cerebral I/R surgery to measure brain infarct sizes. We conducted a proteomic analysis of the lesion side striatum samples and found that tyrosine metabolism and dopaminergic synapse were involved in the occurrence of cerebral stroke and the therapeutic effect of GSH. Western blot assay revealed that tyrosine hydroxylase (TH) mediated the occurrence of I/R-induced ischemic stroke and the therapeutic effect of GSH. We analyzed the regulation of GSH on endogenous small molecule metabolites and showed that exogenous GSH had the most significant effect on intrastriatal dopamine (DA) in I/R model rats by promoting its synthesis and inhibiting its degradation. To further explore whether DA-related alterations were potential targets of GSH, we investigated the therapeutic effect of DA accumulation on ischemic brain injury. The combined administration of the precursor drugs of DA (L-dopa and carbidopa) significantly ameliorated neurological deficits, reduced infarct size, and oxidative stress, and decreased pro-inflammatory cytokines levels in the striatum of I/R injury rats. More interestingly, exogenous L-dopa/carbidopa could also greatly enhance the exposure of intracerebral GSH by upregulating GSH synthetases and enhancing homocysteine (HCY) levels in the striatum. Thus, administration of exogenous GSH exerts a therapeutic effect on ischemic stroke by increasing intrastriatal DA, and the accumulated DA can, in turn, enhance the exposure of GSH and its related substances, thus promoting the therapeutic effect of GSH.


Asunto(s)
Dopamina/metabolismo , Glutatión/farmacología , Accidente Cerebrovascular Isquémico/patología , Animales , Carbidopa/farmacología , Citocinas/efectos de los fármacos , Modelos Animales de Enfermedad , Homocistina/efectos de los fármacos , Infarto de la Arteria Cerebral Media/patología , Levodopa/farmacología , Masculino , Estrés Oxidativo/genética , Proteómica , Ratas , Ratas Wistar , Daño por Reperfusión/patología , Tirosina 3-Monooxigenasa/efectos de los fármacos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA