Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 92(5): 1001-1015, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36754546

RESUMEN

We studied α- and ß-diversity of pollinators, flowering plants and plant-pollinator interactions along the altitudinal gradient of Mt. Olympus, a legendary mountain and biodiversity hotspot in Central Greece. We explored 10 study sites located on the north-eastern slope of the mountain, from 327 to 2596 m a.s.l. Insect surveys were conducted once a month using hand netting (years 2013, 2014 and 2016), and they were combined with recordings of flowering plant diversity (species richness and flower cover). We then calculated α- and ß-diversity of pollinators, plants in flower and plant-pollinator interactions, and explored their demographic response along the altitudinal gradient. Alpha diversity of pollinators, plants and plant-pollinator interactions were altitude dependent; α-diversity of all pollinators, bees, non-bumblebee bees, bee flies and butterflies showed linear declines with altitude, whereas those of hoverflies and bumblebees showed unimodal patterns. Beta diversity and its turnover component of all pollinators, hoverflies, bees, bumblebees, non-bumblebee bees, butterflies and plants showed linear increases, whereas those of bee flies and of plant-pollinator interactions varied independently from the pairwise altitudinal difference. The high dissimilarity and uniqueness of pollination networks, which is probably a result of the high biodiversity and endemism of Mt. Olympus, is driven by species turnover and the formation of new interactions between new species. Contrasting to the monotonic decline of the remaining groups, the unimodal patterns of hoverfly and bumblebee α-diversity are probably the effect of a higher tolerance of these groups to high-altitude environmental conditions. Our findings highlight that the high turnover of species and of pollination interactions along the altitudinal gradient are the mainstay of hyperdiverse mountains, a fact that conveys important historical, ecological and conservational implications.


Asunto(s)
Mariposas Diurnas , Dípteros , Magnoliopsida , Abejas , Animales , Insectos/fisiología , Polinización/fisiología , Biodiversidad , Flores/fisiología , Plantas
2.
Am J Bot ; 110(1): e16098, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371789

RESUMEN

PREMISE: Capparis spinosa is a widespread charismatic plant, in which the nocturnal floral habit contrasts with the high visitation by diurnal bees and the pronounced scarcity of hawkmoths. To resolve this discrepancy and elucidate floral evolution of C. spinosa, we analyzed the intrafloral patterns of visual and olfactory cues in relation to the known sensory biases of the different visitor guilds (bees, butterflies, and hawkmoths). METHODS: We measured the intrafloral variation of scent, reflectance spectra, and colorimetric properties according to three guilds of known visitors of C. spinosa. Additionally, we sampled visitation rates using a motion-activated camera. RESULTS: Carpenter bees visited the flowers eight times more frequently than nocturnal hawkmoths, at dusk and in the following morning. Yet, the floral headspace of C. spinosa contained a typical sphingophilous scent with high emission rates of certain monoterpenes and amino-acid derived compounds. Visual cues included a special case of multisensory nectar guide and color patterns conspicuous to the visual systems of both hawkmoths and bees. CONCLUSIONS: The intrafloral patterns of sensory stimuli suggest that hawkmoths have exerted strong historical selection on C. spinosa. Our study revealed two interesting paradoxes: (a) the flowers phenotypically biased towards the more inconsistent pollinator; and (b) floral display demands an abundance of resources that seems maladaptive in the habitats of C. spinosa. The transition to a binary pollination system accommodating large bees has not required phenotypic changes, owing to specific eco-physiological adaptations, unrelated to pollination, which make this plant an unusual case in pollination ecology.


Asunto(s)
Mariposas Diurnas , Capparis , Abejas , Animales , Odorantes , Néctar de las Plantas , Polinización/fisiología , Flores/fisiología
3.
Chem Biodivers ; 12(10): 1466-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26460555

RESUMEN

Knowing plant volatile chemodiversity and its distribution is essential in order to study biological processes, to estimate the plants' value in use, and to establish sustainable exploitation practices. Yet, attempts to collect and assess data on scent diversity and properties in well-defined geographical areas are rare. Here, we developed a geo-referenced database of the plant volatilome in Greece by consolidating the results included in 116 research articles published in the last 25 years. The data set compiled includes 999 volatile organic compounds distributed into 178 plant taxa, 59 genera, and 19 families. Distillation is the acquisition method almost exclusively used, whereas headspace techniques that would allow the study of subtle ecological processes are generally lacking. Sesquiterpenes show the greatest richness of compounds, followed by monoterpenes and aliphatics. We assess the volatility of the compounds using the normal boiling point (nBP) as its reverse indicator, and we present the volatility spectra of the blends of the genera studied. Mean nBPs vary among genera, with maximal differences as wide as 118.4°. Finally, we feature basic chemodiversity maps for three aromatic plants, and discuss their importance and prospects as a special case of natural resources maps.


Asunto(s)
Plantas/química , Compuestos Orgánicos Volátiles/química , Geografía , Grecia , Temperatura de Transición
4.
Ecol Evol ; 13(2): e9803, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789333

RESUMEN

Fire affects many critical ecological processes, including pollination, and effects of climate change on fire regimes may have profound consequences that are difficult to predict. Considerable work has examined effects of fire on pollinator diversity, but relatively few studies have examined these effects on interaction networks including those of pollinators other than bees. We examined the effects of a severe wildfire on hoverfly pollinators in a Mediterranean island system. Using data collected over 3 consecutive years at burnt and unburnt sites, we documented differences in species diversity, abundance, and functional traits, as well as hoverfly interactions with flowering plants. Hoverfly abundance and species richness peaked during the first post-fire flowering season (year 1), which coincided with the presence of many opportunistic species. Also in year 1, hoverfly pollination networks were larger, less specialized, more nested, and less modular at burnt (vs. unburnt) sites; furthermore, these networks exhibited higher phylogenetic host-plant diversity. These effects declined over the next 2 years, with burnt and unburnt sites converging in similarity to hoverfly communities and interaction networks. While data obtained over 3 years provide a clear timeline of initial post-fire recovery, we emphasize the importance of longer-term monitoring for understanding the responses of natural communities to wildfires, which are projected to become more frequent and more destructive in the future.

5.
Nat Commun ; 9(1): 1041, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531220

RESUMEN

Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role for sensory bias and diffuse coevolution in structuring plant-pollinator networks. This knowledge of floral sensory diversity, by identifying the most influential phenotypes, could help prioritize efforts for plant-pollinator community restoration.


Asunto(s)
Flores/fisiología , Polinización/fisiología , Animales , Filogenia , Plantas
6.
Nat Ecol Evol ; 1(10): 1502-1510, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29185514

RESUMEN

Angiosperm flowers have evolved a dazzling palette of colours and a rich bouquet of scents, principally serving to attract pollinators. Despite recent progress in the ecology of pollination, the sensory floral traits that are important for communication with pollinators (for example, colour and scent) have not been assessed in an unbiased, integrative sense within a community context. Nonetheless, floral sensory stimuli are known key factors that mediate flower visitation, thus affecting community dynamics. Here we show that flowers of the phrygana, a natural Mediterranean scrubland, display integrated patterns of scent composition and colour (as perceived by pollinators). Surprisingly, the data reveal predictive relationships between patterns of volatile composition and flower reflectance spectra. The presence of nectar is related to visual cues and the qualitative composition of floral aromas. Our results reveal a coordinated phenotypic integration consistent with the sensory abilities and perceptual biases of bees, suggesting potential facilitative effects for pollination and highlighting the fundamental importance of bees in Mediterranean-type ecosystems. We offer our unbiased approach as a starting point for more extensive, global investigations of the diversity of floral sensory phenotypes and its role in the community ecology of plant-pollinator interactions.


Asunto(s)
Color , Flores/fisiología , Odorantes/análisis , Ecosistema , Grecia , Pigmentos Biológicos/metabolismo , Fenómenos Fisiológicos de las Plantas
7.
PLoS One ; 10(9): e0138414, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26390402

RESUMEN

The architectural complexity of flower structures (hereafter referred to as floral complexity) may be linked to pollination by specialized pollinators that can increase the probability of successful seed set. As plant-pollinator systems become fragile, a loss of such specialized pollinators could presumably result in an increased likelihood of pollination failure. This is an issue likely to be particularly evident in plants that are currently rare. Using a novel index describing floral complexity we explored whether this aspect of the structure of flowers could be used to predict vulnerability of plant species to extinction. To do this we defined plant vulnerability using the Red Data Book of Rare and Threatened Plants of Greece, a Mediterranean biodiversity hotspot. We also tested whether other intrinsic (e.g. life form, asexual reproduction) or extrinsic (e.g. habitat, altitude, range-restrictedness) factors could affect plant vulnerability. We found that plants with high floral complexity scores were significantly more likely to be vulnerable to extinction. Among all the floral complexity components only floral symmetry was found to have a significant effect, with radial-flower plants appearing to be less vulnerable. Life form was also a predictor of vulnerability, with woody perennial plants having significantly lower risk of extinction. Among the extrinsic factors, both habitat and maximum range were significantly associated with plant vulnerability (coastal plants and narrow-ranged plants are more likely to face higher risk). Although extrinsic and in particular anthropogenic factors determine plant extinction risk, intrinsic traits can indicate a plant's proneness to vulnerability. This raises the potential threat of declining global pollinator diversity interacting with floral complexity to increase the vulnerability of individual plant species. There is potential scope for using plant-pollinator specializations to identify plant species particularly at risk and so target conservation efforts towards them.


Asunto(s)
Flores/anatomía & histología , Flores/fisiología , Plantas/anatomía & histología , Altitud , Animales , Biodiversidad , Libros , Ecosistema , Grecia , Insectos/fisiología , Polinización/fisiología , Reproducción/fisiología , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA