Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Biol Rep ; 49(4): 2687-2693, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35034286

RESUMEN

BACKGROUND: Natural products are not only positioned in the heart of traditional medicine but also in modern medicine as many current drugs are coming from natural sources. Apart from the field of medicine and therapeutics, natural products are broadly used in other industrial fields such as nutrition, skincare products and nanotechnology. METHODS AND RESULTS: The aim of this study was to assess the effects of sweet cherry (Prunus avium L.) fruit extract from the Greek native cultivar 'Vasiliadi', on the human 2D and 3D in vitro models in order to investigate its potential impact on skin. We focused on 2D culture of primary normal human epidermal keratinocytes (NHEK) that were treated with sweet cherry fruit extract. In the first place, we targeted fruit extract potential cytotoxicity by determining ATP intracellular levels. Furthermore, we assessed its potential skin irritability by using 3D skin model. To better understand the bioactivity of sweet cherry fruit. extract, we used qPCR to study the expression of various genes that are implicated in the skin functions. Our experiments showed that sweet cherry fruit extract is non-toxic in 2D keratinocytes culture as well as non-irritant in 3D skin model. Our results revealed that the extract mediated important pathways for the optimum epidermis function such as cell proliferation, immune and inflammatory response. CONCLUSION: The sweet cherry fruit extracts possesses significant activity in epidermis function without any potential of cytotoxicity or skin irritability, which makes it a rather promising active agent for skincare.


Asunto(s)
Prunus avium , Frutas/genética , Humanos , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Prunus avium/metabolismo , Piel
2.
Mol Biol Rep ; 48(5): 4441-4448, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34100152

RESUMEN

There is a persistent interest in innovative and multifunctional ingredients in biology research. With regards to this, natural sources have an important role due to their multiple benefits. Thus, this study aims to present the pleiotropic activity of Prunus avium L. extract on human primary fibroblasts for proving its efficacy in dermis-related processes. We focused on the safety and efficacy assessments based on cytotoxicity and gene expression analysis under oxidative stress. Specifically, Prunus avium L. extract was proved non-cytotoxic in human fibroblasts. The gene expression analysis unveiled that this extract has in vitro protective properties on human dermal fibroblasts under oxidative stress related to antioxidant activity, anti-inflammatory response, cell proliferation and cell- aging. Our study demonstrated for the very first time that the Prunus avium L. extract is a multifunctional ingredient as it mediates several human dermis-related in vitro processes highlighting its potential to be used as an active ingredient in skin care products.


Asunto(s)
Antioxidantes/efectos adversos , Fibroblastos/metabolismo , Frutas/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/efectos adversos , Prunus avium/química , Piel/citología , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Fibroblastos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/genética , Cuidados de la Piel/métodos
3.
J Plant Res ; 134(6): 1351-1362, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34510287

RESUMEN

Cytosine methylation is an epigenetic modification with essential roles in diverse plant biological processes including vegetative and reproductive development and responsiveness to environmental stimuli. A dynamic process involving DNA methyltransferases and DNA demethylases establishes cytosine DNA methylation levels and distribution along the genome. A DNA demethylase gene from barley (Hordeum vulgare), DEMETER (HvDME), the homologue of the Arabidopsis thaliana DME (AtDME), has been characterized previously and found to respond to drought conditions. Here, the promoter of the HvDME gene was analysed further by in silico and DNA methylation analysis. The effect of drought conditions on the DNA methylation status of HvDME was investigated at single-cytosine resolution using bisulfite sequencing. It was demonstrated that the HvDME promoter can be divided into two discrete regions, in terms of DNA methylation level and density; a relatively unmethylated region proximal to the translational start site that is depleted of non-CG (CHG, CHH) methylation and another distal region, approximately 1500 bp upstream of the translational start site, enriched in CG, as well as non-CG methylation. Drought stress provoked alterations in the methylation status of the HvDME promoter distal region, whereas the DNA methylation of the proximal region remained unaffected. Computational analysis of the HvDME promoter revealed the presence of several putative regulatory elements related to drought responsiveness, as well as transposable elements (TEs) that may affect DNA methylation. Overall, our results expand our investigations of the epigenetic regulation of the HvDME gene in response to drought stress in barley and may contribute to further understanding of the epigenetic mechanisms underlying abiotic stress responses in barley and other cereals.


Asunto(s)
Hordeum , Metilación de ADN , Sequías , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Hordeum/genética
4.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281171

RESUMEN

Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.


Asunto(s)
Productos Agrícolas/genética , Estrés Fisiológico/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Regulación de la Expresión Génica de las Plantas , Patrón de Herencia , Fitomejoramiento/métodos
5.
J Exp Bot ; 71(17): 5223-5236, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32279074

RESUMEN

To better adapt transiently or lastingly to stimuli from the surrounding environment, the chromatin states in plant cells vary to allow the cells to fine-tune their transcriptional profiles. Modifications of chromatin states involve a wide range of post-transcriptional histone modifications, histone variants, DNA methylation, and activity of non-coding RNAs, which can epigenetically determine specific transcriptional outputs. Recent advances in the area of '-omics' of major crops have facilitated identification of epigenetic marks and their effect on plant response to environmental stresses. As most epigenetic mechanisms are known from studies in model plants, we summarize in this review recent epigenetic studies that may be important for improvement of crop adaptation and resilience to environmental changes, ultimately leading to the generation of stable climate-smart crops. This has paved the way for exploitation of epigenetic variation in crop breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Metilación de ADN , Epigénesis Genética , Estrés Fisiológico/genética
6.
Mol Biol Rep ; 47(8): 5763-5772, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32666439

RESUMEN

Adverse environmental conditions such as UV radiation induce oxidative and aging events leading to severe damage to human skin cells. Natural products such as plant extracts have been implicated in the skin anti-oxidant and anti-aging cellular protection against environmental stress. Moreover, environmental factors have been shown to impact chromatin structure leading to altered gene expression programs with profound changes in cellular functions. In this study, we assessed the in vitro effect of a leaf extract from Vitis vinifera L. on UV-stressed primary human dermal fibroblasts, focusing on gene expression and DNA methylation as an epigenetic factor. Expression analysis of two genes known to be implicated in skin anti-aging, SIRT1and HSP4, demonstrated significant induction in the presence of the extract under normal or UVA conditions. In addition, DNA methylation profiling of SIRT1 and HSP47 promoters showed that the V. vinifera L. extract induced changes in the DNA methylation pattern of both genes that may be associated with SIRT1 and HSP47 gene expression. Our study shows for the first time transcriptional and DNA methylation alterations on human skin fibroblasts exposed to UV stress and suggest a protective effect of a V. vinifera extract possibly through transcriptional regulation of critical skin anti-aging genes.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Vitis/química , Antioxidantes/farmacología , Células Cultivadas , Metilación de ADN , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Piel/citología , Piel/metabolismo , Rayos Ultravioleta
8.
Plants (Basel) ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592762

RESUMEN

Landraces and indigenous varieties comprise valuable sources of crop species diversity. Their utilization in plant breeding may lead to increased yield and enhanced quality traits, as well as resilience to various abiotic and biotic stresses. Recently, new approaches based on the rapid advancement of genomic technologies such as deciphering of pangenomes, multi-omics tools, marker-assisted selection (MAS), genome-wide association studies (GWAS), and CRISPR/Cas9 gene editing greatly facilitated the exploitation of landraces in modern plant breeding. In this paper, we present a comprehensive overview of the implementation of new genomic technologies and highlight their importance in pinpointing the genetic basis of desirable traits in landraces and indigenous varieties of annual, perennial herbaceous, and woody crop species cultivated in the Mediterranean region. The need for further employment of advanced -omic technologies to unravel the full potential of landraces and indigenous varieties underutilized genetic diversity is also indicated. Ultimately, the large amount of genomic data emerging from the investigation of landraces and indigenous varieties reveals their potential as a source of valuable genes and traits for breeding. The role of landraces and indigenous varieties in mitigating the ongoing risks posed by climate change in agriculture and food security is also highlighted.

9.
BMC Plant Biol ; 13: 172, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24175960

RESUMEN

BACKGROUND: Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. RESULTS: An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5' and 3' Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3' downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. CONCLUSION: A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation patterns within the gene in two different cultivars suggested epigenetic regulation of HvDME. The study of a barley DME gene will contribute to our understanding of epigenetic mechanisms operating during seed development and stress response in agronomically important cereal crops.


Asunto(s)
Sequías , Epigénesis Genética , Genes de Plantas/genética , Hordeum/crecimiento & desarrollo , Hordeum/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Simulación por Computador , Metilación de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Estrés Fisiológico/genética
10.
Plants (Basel) ; 12(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679041

RESUMEN

Global climate change is one of the major constraints limiting plant growth, production, and sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs) to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable approach for crop improvement in the context of the ongoing climate challenges. In this review, we present the progress that has been achieved towards CWRs exploitation for enhanced resilience against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures) in crops of high nutritional and economic value, such as tomato, legumes, and several woody perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative counterparts have unraveled important information with respect to the molecular basis of tolerance to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes, gene networks, and biochemical pathways associated with resilience to adverse conditions, such as heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity, and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes. Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production challenges arising from extreme environmental conditions.

11.
Life (Basel) ; 13(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36676169

RESUMEN

Vitis vinifera ssp. vinifera (domesticated grapevine) includes thousands of cultivars, which are classified according to their main uses, as wines, fresh fruits or dried raisins and sultanas since ancient times. Evidence showed that Crete grapevine cultivars and winemaking date back to 2300 BC. In this study, fifty-one genotypes belonging to seven different traditional Vitis vinifera cultivars, presumed autochthonous to the island of Crete, were selected for their wine-producing potential and classified by 51 ampelographic descriptors. In addition, five genotypes belonging to two non-autochthonous cultivars were included as out-group controls. Subsequently, in order to characterize genetic diversity, establish genetic relationships within and between cultivars and solve accession-labeling problems, genotypes were fingerprinted employing Simple Sequence Repeat (SSR or microsatellite) markers. Four of the autochthonous cultivars namely 'Vidiano', 'Vilana', 'Plyto', and 'Moschato Spinas' are used in the local economy for blanc (white) wine production while the rest, namely 'Kotsifali', 'Liatiko' and 'Mantilari' for Noir (red) wines. The two cultivars employed as out-group were 'Moschato Samou' and 'Moschato Alexandrias': both white wine producers. Ampelography-based clustering grouped the majority of genotypes along cultivar-specific clusters. All three Moschato cultivars formed a distinct clade pointing to the non-autochthonous origin of 'Moschato Spinas'. A total of one hundred and thirteen (113) SSR alleles were amplified from thirteen (13) SSR loci, with an average number of alleles per locus equal to 10.23 revealing ample genetic polymorphism. The cumulative probability of identity was also quite high (3.389 × 10-16). The overall observed heterozygosity was 0.837 while for twenty-nine of the examined genotypes, at least one private SSR allele was detected. The majority of genotypes were grouped in cultivar-specific clusters. The results of this paper pave the way for the certification and registration of clones of some of the most important wine-producing cultivars in Crete.

12.
Plants (Basel) ; 13(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202337

RESUMEN

Within the framework of preserving and valorizing the rich grapevine germplasm of the Epirus region of Greece, indigenous grapevine (Vitis vinifera L.) cultivars were characterized and assessed for their resilience to abiotic stresses in the context of climate change. The cultivars 'Debina' and 'Dichali' displayed significant differences in their response to drought stress as judged by morpho-physiological analysis, indicating higher drought tolerance for Dichali. Hence, they were selected for further study aiming to identify genetic and epigenetic mechanisms possibly regulating drought adaptability. Specifically, self-rooted and heterografted on 'Richter 110' rootstock plants were subjected to two phases of drought with a recovery period in between. Gene expression analysis was performed for two stress-related miRNAs and their target genes: (a) miRNA159 and putative targets, VvMYB101, VvGATA-26-like, VvTOPLESS-4-like and (b) miRNA156 and putative target gene VvCONSTANS-5. Overall, grafted plants exhibited a higher drought tolerance than self-rooted plants, suggesting beneficial rootstock-scion interactions. Comparative analysis revealed differential gene expression under repetitive drought stresses between the two cultivars as well as between the self-rooted and grafted plants. 'Dichali' exhibited an up-regulation of most of the genes examined, which may be associated with increased tolerance. Nevertheless, the profound down-regulation of VvTOPLESS-4-like (a transcriptional co-repressor of transcription factors) upon drought and the concomitant up-regulation of miRNA159 highlights the importance of this 'miRNA-target' module in drought responsiveness. DNA methylation profiling using MSAP analysis revealed differential methylation patterns between the two genotypes in response to drought. Further investigations of gene expression and DNA methylation will contribute to our understanding of the epigenetic mechanisms underlying grapevine tolerance to drought stress.

13.
Front Plant Sci ; 14: 1181039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389288

RESUMEN

Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.

14.
BMC Plant Biol ; 12: 166, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22985436

RESUMEN

BACKGROUND: MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. RESULTS: Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. CONCLUSIONS: Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental stages as well as in barley cultivars with different seed size was evidenced for both genes. The two barley Type I MADS-box genes were found to be induced by ABA and JA. DNA methylation differences in different seed developmental stages and after exogenous application of ABA is suggestive of epigenetic regulation of gene expression. The study of barley Type I-like MADS-box genes extends our investigations of gene regulation during endosperm and seed development in a monocot crop like barley.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Hordeum/crecimiento & desarrollo , Hordeum/genética , Proteínas de Dominio MADS/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Ciclopentanos/farmacología , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Epigénesis Genética/efectos de los fármacos , Exones/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Hordeum/efectos de los fármacos , Intrones/genética , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Oxilipinas/farmacología , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuencias Reguladoras de Ácidos Nucleicos/genética , Semillas/efectos de los fármacos , Alineación de Secuencia , Análisis de Secuencia de Proteína
15.
Physiol Plant ; 146(1): 71-85, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22409646

RESUMEN

A number of genes are involved in the vernalization pathway, such as VRN1, VRN2 and VRN3/FT1, whose function has been studied in barley and wheat. However, the function of the flowering and vernalization integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) has not been well studied in Triticeae, and particularly in barley. Herein, we cloned and characterized two barley SOC1-like homologs, HvSOC1-like1 and HvSOC1-like2. Primary sequence analysis of the predicted HvSOC1-like1 and HvSOC1-like2 proteins showed that they are members of the type II MADS-box protein family. Phylogenetic analysis placed the predicted proteins with other SOC1 and SOC1-like proteins from different species neighboring those from other cereal plant species. Primary and secondary structures of the predicted proteins are conserved to each other and more distant to the recently identified barley ODDSOC1 proteins. Genomic organization of HvSOC1-like1 is very similar to the Arabidopsis and Brachypodium SOC1 genes and localized in highly syntenic chromosomal regions. Regulatory cis-acting elements detected in the HvSOC1-like1 promoter include the CArG-box, implicated in the regulation of SOC1 expression in Arabidopsis. Both HvSOC1-like1 and HvSOCI-like2 are expressed in vegetative and reproductive tissues and at different stages of seed development. Both are upregulated in a particular seed developmental stage suggesting their possible implication in seed development. Furthermore, HvSOC1-like1 was induced in two winter barley cultivars after vernalization treatment pointing to its probable involvement in the vernalization process. The study of the SOC1 genes reported here opens the way for a better understanding of both the vernalization process and seed development and germination in this important cereal crop.


Asunto(s)
Frío , Germinación/genética , Hordeum/crecimiento & desarrollo , Hordeum/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regulación hacia Arriba
16.
BMC Plant Biol ; 10: 73, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20409301

RESUMEN

BACKGROUND: Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group) protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare), an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins. RESULTS: Four barley PcG gene homologues, named HvFIE, HvE(Z), HvSu(z)12a, and HvSu(z)12b were identified and structurally and phylogenetically characterized. The corresponding genes HvFIE, HvE(Z), HvSu(z)12a, and HvSu(z)12b were mapped onto barley chromosomes 7H, 4H, 2H and 5H, respectively. Expression analysis of the PcG genes revealed significant differences in gene expression among tissues and seed developmental stages and between barley cultivars with varying seed size. Furthermore, HvFIE and HvE(Z) gene expression was responsive to the abiotic stress-related hormone abscisic acid (ABA) known to be involved in seed maturation, dormancy and germination. CONCLUSION: This study reports the first characterization of the PcG homologues, HvFIE, HvE(Z), HvSu(z)12a and HvSu(z)12b in barley. All genes co-localized with known chromosomal regions responsible for malting quality related traits, suggesting that they might be used for developing molecular markers to be applied in marker assisted selection. The PcG differential expression pattern in different tissues and seed developmental stages as well as in two barley cultivars with different seed size is suggestive of a role for these genes in barley seed development. HvFIE and HvE(Z) were also found to be induced by the plant hormone ABA implying an association with ABA-mediated processes during seed development, germination and stress response.


Asunto(s)
Ácido Abscísico/farmacología , Cromatina/genética , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/genética , Proteínas Represoras/genética , Semillas/crecimiento & desarrollo , Secuencia de Aminoácidos , Mapeo Cromosómico , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes de Plantas/genética , Hordeum/crecimiento & desarrollo , Datos de Secuencia Molecular , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Proteínas del Grupo Polycomb , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/efectos de los fármacos , Plantones/genética , Semillas/anatomía & histología , Semillas/efectos de los fármacos , Semillas/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
17.
Front Plant Sci ; 11: 613004, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510757

RESUMEN

Plant grafting is an ancient agricultural practice widely employed in crops such as woody fruit trees, grapes, and vegetables, in order to improve plant performance. Successful grafting requires the interaction of compatible scion and rootstock genotypes. This involves an intricate network of molecular mechanisms operating at the graft junction and associated with the development and the physiology of the scion, ultimately leading to improved agricultural characteristics such as fruit quality and increased tolerance/resistance to abiotic and biotic factors. Bidirectional transfer of molecular signals such as hormones, nutrients, proteins, and nucleic acids from the rootstock to the scion and vice versa have been well documented. In recent years, studies on rootstock-scion interactions have proposed the existence of an epigenetic component in grafting reactions. Epigenetic changes such as DNA methylation, histone modification, and the action of small RNA molecules are known to modulate chromatin architecture, leading to gene expression changes and impacting cellular function. Mobile small RNAs (siRNAs) migrating across the graft union from the rootstock to the scion and vice versa mediate modifications in the DNA methylation pattern of the recipient partner, leading to altered chromatin structure and transcriptional reprogramming. Moreover, graft-induced DNA methylation changes and gene expression shifts in the scion have been associated with variations in graft performance. If these changes are heritable they can lead to stably altered phenotypes and affect important agricultural traits, making grafting an alternative to breeding for the production of superior plants with improved traits. However, most reviews on the molecular mechanisms underlying this process comprise studies related to vegetable grafting. In this review we will provide a comprehensive presentation of the current knowledge on the epigenetic changes and transcriptional reprogramming associated with the rootstock-scion interaction focusing on woody plant species, including the recent findings arising from the employment of advanced-omics technologies as well as transgrafting methodologies and their potential exploitation for generating superior quality grafts in woody species. Furthermore, will discuss graft-induced heritable epigenetic changes leading to novel plant phenotypes and their implication to woody crop improvement for yield, quality, and stress resilience, within the context of climate change.

18.
Physiol Plant ; 136(3): 358-68, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19470089

RESUMEN

Epigenetic phenomena have been associated with modifications of chromatin structure. These are achieved, in part, by histone post-translational modifications including acetylations and deacetylations, the later being catalyzed by histone deacetylaces (HDACs). Eukaryotic HDACs are grouped into three major families, RPD3/HDA1, SIR2 and the plant-specific HD2. HDAC genes have been analyzed from model plants such as Arabidopsis, rice and maize and have been shown to be involved in various cellular processes including seed development, vegetative and reproductive growth and responses to abiotic and biotic stress, but reports on HDACs from other crops are limited. In this work two full-length cDNAs (HvHDAC2-1 and HvHDAC2-2) encoding two members of the plant-specific HD2 family, respectively, were isolated and characterized from barley (Hordeum vulgare), an agronomically important cereal crop. HvHDAC2-1 and HvHDAC2-2 were mapped on barley chromosomes 1H and 3H, respectively, which could prove useful in developing markers for marker-assisted selection in breeding programs. Expression analysis of the barley HD2 genes demonstrated that they are expressed in all tissues and seed developmental stages examined. Significant differences were observed among tissues and seed stages, and between cultivars with varying seed size, suggesting an association of these genes with seed development. Furthermore, the HD2 genes from barley were found to respond to treatments with plant stress-related hormones such as jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA) implying an association of these genes with plant resistance to biotic and abiotic stress. The expression pattern of HD2 genes suggests a possible role for these genes in the epigenetic regulation of seed development and stress response.


Asunto(s)
Epigénesis Genética , Histona Desacetilasas/metabolismo , Hordeum/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histona Desacetilasas/genética , Hordeum/metabolismo , Datos de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , ARN de Planta/genética , Semillas/genética , Semillas/metabolismo , Alineación de Secuencia
19.
BMC Genomics ; 8: 460, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18081932

RESUMEN

BACKGROUND: Gene fusion detection - also known as the 'Rosetta Stone' method - involves the identification of fused composite genes in a set of reference genomes, which indicates potential interactions between its un-fused counterpart genes in query genomes. The precision of this method typically improves with an ever-increasing number of reference genomes. RESULTS: In order to explore the usefulness and scope of this approach for protein interaction prediction and generate a high-quality, non-redundant set of interacting pairs of proteins across a wide taxonomic range, we have exhaustively performed gene fusion analysis for 184 genomes using an efficient variant of a previously developed protocol. By analyzing interaction graphs and applying a threshold that limits the maximum number of possible interactions within the largest graph components, we show that we can reduce the number of implausible interactions due to the detection of promiscuous domains. With this generally applicable approach, we generate a robust set of over 2 million distinct and testable interactions encompassing 696,894 proteins in 184 species or strains, most of which have never been the subject of high-throughput experimental proteomics. We investigate the cumulative effect of increasing numbers of genomes on the fidelity and quantity of predictions, and show that, for large numbers of genomes, predictions do not become saturated but continue to grow linearly, for the majority of the species. We also examine the percentage of component (and composite) proteins with relation to the number of genes and further validate the functional categories that are highly represented in this robust set of detected genome-wide interactions. CONCLUSION: We illustrate the phylogenetic and functional diversity of gene fusion events across genomes, and their usefulness for accurate prediction of protein interaction and function.


Asunto(s)
Fusión Génica , Redes Reguladoras de Genes , Arabidopsis/genética , Proteínas Bacterianas/metabolismo , Chlamydia/genética , Variación Genética , Genoma , Filogenia , Proteínas de Plantas/metabolismo , Unión Proteica , Reproducibilidad de los Resultados
20.
Gene ; 622: 50-66, 2017 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-28435133

RESUMEN

The genetic basis of fruit size and shape was investigated for the first time in Cucurbita species and genetic loci associated with fruit morphology have been identified. Although extensive genomic resources are available at present for tomato (Solanum lycopersicum), cucumber (Cucumis sativus), melon (Cucumis melo) and watermelon (Citrullus lanatus), genomic databases for Cucurbita species are limited. Recently, our group reported the generation of pumpkin (Cucurbita pepo) transcriptome databases from two contrasting cultivars with extreme fruit sizes. In the current study we used these databases to perform comparative transcriptome analysis in order to identify genes with potential roles in fruit morphology and fruit size. Differential Gene Expression (DGE) analysis between cv. 'Munchkin' (small-fruit) and cv. 'Big Moose' (large-fruit) revealed a variety of candidate genes associated with fruit morphology with significant differences in gene expression between the two cultivars. In addition, we have set the framework for generating EST-SSR markers, which discriminate different C. pepo cultivars and show transferability to related Cucurbitaceae species. The results of the present study will contribute to both further understanding the molecular mechanisms regulating fruit morphology and furthermore identifying the factors that determine fruit size. Moreover, they may lead to the development of molecular marker tools for selecting genotypes with desired morphological traits.


Asunto(s)
Cucurbita/genética , Etiquetas de Secuencia Expresada , Frutas/genética , Repeticiones de Microsatélite , Transcriptoma , Cucurbita/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA