RESUMEN
Survival outcomes for relapsed/refractory pediatric acute myeloid leukemia (R/R AML) remain dismal. Epigenetic changes can result in gene expression alterations which are thought to contribute to both leukemogenesis and chemotherapy resistance. We report results from a phase I trial with a dose expansion cohort investigating decitabine and vorinostat in combination with fludarabine, cytarabine, and G-CSF (FLAG) in pediatric patients with R/R AML [NCT02412475]. Thirty-seven patients enrolled with a median age at enrollment of 8.4 (range, 1-20) years. There were no dose limiting toxicities among the enrolled patients, including two patients with Down syndrome. The recommended phase 2 dose of decitabine in combination with vorinostat and FLAG was 10 mg/m2 . The expanded cohort design allowed for an efficacy evaluation and the overall response rate among 35 evaluable patients was 54% (16 complete response (CR) and 3 complete response with incomplete hematologic recovery (CRi)). Ninety percent of responders achieved minimal residual disease (MRD) negativity (<0.1%) by centralized flow cytometry and 84% (n = 16) successfully proceeded to hematopoietic stem cell transplant. Two-year overall survival was 75.6% [95%CI: 47.3%, 90.1%] for MRD-negative patients vs. 17.9% [95%CI: 4.4%, 38.8%] for those with residual disease (p < .001). Twelve subjects (34%) had known epigenetic alterations with 8 (67%) achieving a CR, 7 (88%) of whom were MRD negative. Correlative pharmacodynamics demonstrated the biologic activity of decitabine and vorinostat and identified specific gene enrichment signatures in nonresponding patients. Overall, this therapy was well-tolerated, biologically active, and effective in pediatric patients with R/R AML, particularly those with epigenetic alterations.
Asunto(s)
Leucemia Mieloide Aguda , Linfoma , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Niño , Citarabina , Decitabina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Linfoma/tratamiento farmacológico , VorinostatRESUMEN
Current therapies for relapsed/refractory (R/R) pediatric myeloid neoplasms are inadequately effective. Real-world data (RWD) can improve care by augmenting traditional studies and include individuals not eligible for clinical trials. The Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) consortium recently completed T2016-003, a phase 1 study of decitabine, vorinostat, fludarabine, cytarabine, and granulocyte colony-stimulating factor (G-CSF) in R/R acute myeloid leukemia (AML), which added epigenetic drugs to a cytotoxic backbone. We report results of RWD from six centers that treated 28 pediatric patients (26 with AML, two with other myeloid neoplasms) identically to the TACL study but who were not enrolled. This allowed unique analyses and the ability to compare data with the 35 TACL study patients. The overall response rate (ORR) (complete response [CR] plus CR with incomplete count recovery) among 26 RWD evaluable patients was 65%. The ORR of 13 patients with relapsed AML with epigenetic alterations was 69% (T2016-003 + RWD: 68%, n = 25), of eight patients with refractory AML was 38% (T2016-003 + RWD: 41%, n = 17) and of five patients with therapy-related AML (t-AML) was 80% (T2016-003 + RWD: 75%, n = 8). The mean number of Grade 3/4 toxicities experienced by the T2016-003-eligible RWD population (n = 22) (one per patient-cycle) was not meaningfully different than those (n = 6) who would have been TACL study-ineligible secondary to comorbidities (two per patient-cycle). Overall, this therapy was well tolerated and effective in pediatric patients with R/R myeloid neoplasms, particularly those with epigenetic alterations, t-AML, and refractory disease.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Recurrencia Local de Neoplasia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Niño , Citarabina , Decitabina/uso terapéutico , Factor Estimulante de Colonias de Granulocitos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Vidarabina , Vorinostat/uso terapéuticoRESUMEN
This article has been removed at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
RESUMEN
YARS2 variants have previously been described in patients with myopathy, lactic acidosis and sideroblastic anemia 2 (MLASA2). YARS2 encodes the mitochondrial tyrosyl-tRNA synthetase, which is responsible for conjugating tyrosine to its cognate mt-tRNA for mitochondrial protein synthesis. Here we describe 14 individuals from 11 families presenting with sideroblastic anemia and YARS2 variants that we identified using a sideroblastic anemia gene panel or exome sequencing. The phenotype of these patients ranged from MLASA to isolated congenital sideroblastic anemia. As in previous cases, inter- and intra-familial phenotypic variability was observed, however, this report includes the first cases with isolated sideroblastic anemia and patients with biallelic YARS2 variants that have no clinically ascertainable phenotype. We identified ten novel YARS2 variants and three previously reported variants. In vitro amino-acylation assays of five novel missense variants showed that three had less effect on the catalytic activity of YARS2 than the most commonly reported variant, p.(Phe52Leu), associated with MLASA2, which may explain the milder phenotypes in patients with these variants. However, the other two missense variants had a more severe effect on YARS2 catalytic efficiency. Several patients carried the common YARS2 c.572 G>T, p.(Gly191Val) variant (minor allele frequency =0.1259) in trans with a rare deleterious YARS2 variant. We have previously shown that the p.(Gly191Val) variant reduces YARS2 catalytic activity. Consequently, we suggest that biallelic YARS2 variants, including severe loss-of-function alleles in trans of the common p.(Gly191Val) variant, should be considered as a cause of isolated congenital sideroblastic anemia, as well as the MLASA syndromic phenotype.
Asunto(s)
Acidosis Láctica/genética , Anemia Sideroblástica/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación de Línea Germinal , Síndrome MELAS/genética , Proteínas Mitocondriales/genética , Tirosina-ARNt Ligasa/genética , Acidosis Láctica/enzimología , Adolescente , Anemia Sideroblástica/enzimología , Femenino , Estudios de Asociación Genética , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Humanos , Lactante , Síndrome MELAS/enzimología , Masculino , Persona de Mediana Edad , Mutación Missense , Adulto JovenRESUMEN
PURPOSE: Treatment failure from drug resistance is the primary reason for relapse in acute lymphoblastic leukemia (ALL). Improving outcomes by targeting mechanisms of drug resistance is a potential solution. PATIENTS AND METHODS: We report results investigating the epigenetic modulators decitabine and vorinostat with vincristine, dexamethasone, mitoxantrone, and PEG-asparaginase for pediatric patients with relapsed or refractory B-cell ALL (B-ALL). Twenty-three patients, median age 12 years (range, 1-21) were treated in this trial. RESULTS: The most common grade 3-4 toxicities included hypokalemia (65%), anemia (78%), febrile neutropenia (57%), hypophosphatemia (43%), leukopenia (61%), hyperbilirubinemia (39%), thrombocytopenia (87%), neutropenia (91%), and hypocalcemia (39%). Three subjects experienced dose-limiting toxicities, which included cholestasis, steatosis, and hyperbilirubinemia (n = 1); seizure, somnolence, and delirium (n = 1); and pneumonitis, hypoxia, and hyperbilirubinemia (n = 1). Infectious complications were common with 17 of 23 (74%) subjects experiencing grade ≥3 infections including invasive fungal infections in 35% (8/23). Nine subjects (39%) achieved a complete response (CR + CR without platelet recovery + CR without neutrophil recovery) and five had stable disease (22%). Nine (39%) subjects were not evaluable for response, primarily due to treatment-related toxicities. Correlative pharmacodynamics demonstrated potent in vivo modulation of epigenetic marks, and modulation of biologic pathways associated with functional antileukemic effects. CONCLUSIONS: Despite encouraging response rates and pharmacodynamics, the combination of decitabine and vorinostat on this intensive chemotherapy backbone was determined not feasible in B-ALL due to the high incidence of significant infectious toxicities. This study is registered at http://www.clinicaltrials.gov as NCT01483690.