Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(16): 24735-24749, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614823

RESUMEN

To combat chromatic dispersion (CD) in intensity modulation and direct detection (IM/DD) systems, three chirp-free demonstrations are experimentally performed with an iterative pre-electronic dispersion compensation (pre-EDC) algorithm at the transmitter end, for 28 GBaud non-return-to-zero on-off keying (NRZ-OOK), 56 GBaud NRZ-OOK and 28 GBaud four-level pulse-amplitude-modulation (PAM-4) signals, over distances of 100 km, 50 km and 40 km of single mode fiber (SMF), respectively. The iterative pre-EDC algorithm is based on the Gerchberg-Saxton (GS) algorithm, which treats the unconstrained phase at the direct detection receiver as a degree of freedom. At the receiver side, only a linear fractionally-spaced (T/2) post-feed-forward equalizer (post-FFE) is employed to combat the residual inter-symbol interference (ISI). Experimental results show that the aforementioned three demonstrations can approach the forward error correction (FEC) bit error rate (BER) threshold of 3.8 × 10-3 with (15 pre-EDC iterations and 5-tap post-FFE), (30 pre-EDC iterations and 15-tap post-FFE), and (10 pre-EDC iterations and 25-tap post-FFE), respectively. The results indicate the applicability of the pre-EDC algorithm in high-capacity IM/DD systems for transmission distances below 100 km of SMF.

2.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466505

RESUMEN

The design, micro-fabrication, and characterization of a resistance temperature detector (RTD) based micro sensor for minimally invasive breathing analysis and monitoring is presented. Experimental results demonstrate that the change in air temperature while inhaling and exhaling can be transduced into a time varying electrical signal, which is subsequently used to determine the breathing frequency (respiratory rate). The RTD is placed into a Wheatstone bridge to simultaneously reduce the sensor's output noise and improve overall system accuracy. The proposed design could potentially aid health care providers in the determination of respiratory rates, which is of critical importance during the current COVID-19 pandemic.


Asunto(s)
COVID-19/epidemiología , Monitoreo Fisiológico/instrumentación , Respiración , COVID-19/fisiopatología , COVID-19/virología , Diseño de Equipo , Humanos , Humedad , Pandemias , SARS-CoV-2/aislamiento & purificación , Temperatura
3.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498289

RESUMEN

In this paper, a customizable wearable 3D-printed bionic arm is designed, fabricated, and optimized for a right arm amputee. An experimental test has been conducted for the user, where control of the artificial bionic hand is accomplished successfully using surface electromyography (sEMG) signals acquired by a multi-channel wearable armband. The 3D-printed bionic arm was designed for the low cost of 295 USD, and was lightweight at 428 g. To facilitate a generic control of the bionic arm, sEMG data were collected for a set of gestures (fist, spread fingers, wave-in, wave-out) from a wide range of participants. The collected data were processed and features related to the gestures were extracted for the purpose of training a classifier. In this study, several classifiers based on neural networks, support vector machine, and decision trees were constructed, trained, and statistically compared. The support vector machine classifier was found to exhibit an 89.93% success rate. Real-time testing of the bionic arm with the optimum classifier is demonstrated.


Asunto(s)
Brazo , Biónica , Aprendizaje Automático , Músculo Esquelético , Algoritmos , Árboles de Decisión , Electromiografía , Gestos , Humanos , Redes Neurales de la Computación , Impresión Tridimensional , Máquina de Vectores de Soporte
4.
Opt Express ; 22(9): 10710-5, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921772

RESUMEN

We have fabricated a waveguide integrated monolithic silicon infrared detector. The photodiode consists of a p-i-n junction across a silicon-on-insulator (SOI) rib waveguide. Absorption is due to surface-states at the silicon/air interface of the waveguide. A 2 mm long detector shows a response of 0.045 A/W (calculated as a function of coupled light) and is capable of operation at 10 Gb/s at a reverse bias voltage of 2 V.

5.
Opt Express ; 22(2): 1209-19, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24515126

RESUMEN

Perturbation based nonlinearity pre-compensation has been performed for a 128 Gbit/s single-carrier dual-polarization 16-ary quadrature-amplitude-modulation (DP 16-QAM) signal. Without any performance degradation, a complexity reduction factor of 6.8 has been demonstrated for a transmission distance of 3600 km by combining symmetric electronic dispersion compensation and root-raised-cosine pulse shaping with a roll-off factor of 0.1. Transmission over 4200 km of standard single-mode fiber with EDFA amplification was achieved for the 128 Gbit/s DP 16-QAM signals with a forward error correction (FEC) threshold of 2 × 10(-2).

6.
Opt Express ; 21(17): 19530-7, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-24105500

RESUMEN

We have fabricated monolithic silicon avalanche photodiodes capable of 10 Gbps operation at a wavelength of 1550 nm. The photodiodes are entirely CMOS process compatible and comprise a p-i-n junction integrated with a silicon-on-insulator (SOI) rib waveguide. Photo-generation is initiated via the presence of deep levels in the silicon bandgap, introduced by ion implantation and modified by subsequent annealing. The devices show a small signal 3 dB bandwidth of 2.0 GHz as well as an open eye pattern at 10 Gbps. A responsivity of 4.7 ± 0.5 A/W is measured for a 600 µm device at a reverse bias of 40 V.

7.
Opt Express ; 20(26): B151-8, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23262846

RESUMEN

The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.

8.
Opt Express ; 19(26): B81-9, 2011 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22274107

RESUMEN

A novel electronic dispersion pre-compensation scheme for a directly modulated laser is described and experimentally demonstrated for transmission distances beyond 200 km using a low-cost laser packaged for 2.5-Gb/s while operated at 10.709-Gb/s. A single look-up-table (LUT) for the drive current is designed to mitigate the effects of fiber dispersion, the intrinsic nonlinear modulation response of the laser, and the laser package. Experimental results show that an 11-bit LUT can compensate the dispersion of 202 km of standard single mode fiber with a required optical-signal-to-noise-ratio of 18.61 dB at a bit error ratio of 3.8 × 10(-3).

9.
Opt Express ; 19(26): B628-35, 2011 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22274080

RESUMEN

The implications of increasing the symbol rate for a given digital-to-analog converter (DAC) sampling rate are investigated by considering the generation of 112 Gbit/s PM 16-QAM signals (14 Gsym/s) using a 21 GSa/s DAC with 6-bit resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA