Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(39): 9696-9701, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201708

RESUMEN

Disparities in outcomes across social groups pervade human societies and are of central interest to the social sciences. How people treat others is known to depend on a multitude of factors (e.g., others' gender, ethnicity, appearance) even when these should be irrelevant. However, despite substantial progress, much remains unknown regarding (i) the set of mechanisms shaping people's behavior toward members of different social groups and (ii) the extent to which these mechanisms can explain the structure of existing societal disparities. Here, we show in a set of experiments the important interplay between social perception and social valuation processes in explaining how people treat members of different social groups. Building on the idea that stereotypes can be organized onto basic, underlying dimensions, we first found using laboratory economic games that quantitative variation in stereotypes about different groups' warmth and competence translated meaningfully into resource allocation behavior toward those groups. Computational modeling further revealed that these effects operated via the interaction of social perception and social valuation processes, with warmth and competence exerting diverging effects on participants' preferences for equitable distributions of resources. This framework successfully predicted behavior toward members of a diverse set of social groups across samples and successfully generalized to predict societal disparities documented in labor and education settings with substantial precision and accuracy. Together, these results highlight a common set of mechanisms linking social group information to social treatment and show how preexisting, societally shared assumptions about different social groups can produce and reinforce societal disparities.


Asunto(s)
Conducta Social , Economía del Comportamiento , Femenino , Juegos Experimentales , Humanos , Masculino , Prejuicio/psicología , Psicología Social , Identificación Social , Percepción Social , Estereotipo
3.
Curr Opin Physiol ; 222021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34595361

RESUMEN

Dexterous motor control requires feedback from proprioceptors, internal mechanosensory neurons that sense the body's position and movement. An outstanding question in neuroscience is how diverse proprioceptive feedback signals contribute to flexible motor control. Genetic tools now enable targeted recording and perturbation of proprioceptive neurons in behaving animals; however, these experiments can be challenging to interpret, due to the tight coupling of proprioception and motor control. Here, we argue that understanding the role of proprioceptive feedback in controlling behavior will be aided by the development of multiscale models of sensorimotor loops. We review current phenomenological and structural models for proprioceptor encoding and discuss how they may be integrated with existing models of posture, movement, and body state estimation.

4.
Cell Rep ; 36(13): 109730, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34592148

RESUMEN

Quantifying movement is critical for understanding animal behavior. Advances in computer vision now enable markerless tracking from 2D video, but most animals move in 3D. Here, we introduce Anipose, an open-source toolkit for robust markerless 3D pose estimation. Anipose is built on the 2D tracking method DeepLabCut, so users can expand their existing experimental setups to obtain accurate 3D tracking. It consists of four components: (1) a 3D calibration module, (2) filters to resolve 2D tracking errors, (3) a triangulation module that integrates temporal and spatial regularization, and (4) a pipeline to structure processing of large numbers of videos. We evaluate Anipose on a calibration board as well as mice, flies, and humans. By analyzing 3D leg kinematics tracked with Anipose, we identify a key role for joint rotation in motor control of fly walking. To help users get started with 3D tracking, we provide tutorials and documentation at http://anipose.org/.


Asunto(s)
Conducta Animal/fisiología , Imagenología Tridimensional , Movimiento/fisiología , Caminata/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Aprendizaje Profundo , Humanos , Imagenología Tridimensional/métodos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA