Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Addict Biol ; 27(6): e13238, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36301208

RESUMEN

Embryonic exposure to ethanol increases the risk for alcohol use disorder in humans and stimulates alcohol-related behaviours in different animal models. Evidence in rats and zebrafish suggests that this phenomenon induced by ethanol at low-moderate concentrations involves a stimulatory effect on neurogenesis and density of hypothalamic neurons expressing the peptides, hypocretin/orexin (Hcrt) and melanin-concentrating hormone (MCH), known to promote alcohol consumption. Building on our report in zebrafish showing that ethanol induces ectopic expression of Hcrt neurons outside the hypothalamus, we investigated here whether embryonic ethanol exposure also induces ectopic peptide neurons in rats similar to zebrafish and affects their morphological characteristics and if these ectopic neurons are functional and have a role in the ethanol-induced disturbances in behaviour. We demonstrate in rats that ethanol at a low-moderate dose, in addition to increasing Hcrt and MCH neurons in the lateral hypothalamus where they are normally concentrated, induces ectopic expression of these peptide neurons further anterior in the nucleus accumbens core and ventromedial caudate putamen where they have not been previously observed and causes morphological changes relative to normally located hypothalamic neurons. Similar to rats, embryonic ethanol exposure at a low-moderate dose in zebrafish induces ectopic Hcrt neurons anterior to the hypothalamus and alters their morphology. Notably, laser ablation of these ectopic Hcrt neurons blocks the behavioural effects induced by ethanol exposure, including increased anxiety and locomotor activity. These findings suggest that the ectopic peptide neurons are functional and contribute to the ethanol-induced behavioural disturbances related to the overconsumption of alcohol.


Asunto(s)
Etanol , Neuronas , Orexinas , Efectos Tardíos de la Exposición Prenatal , Animales , Ratas , Etanol/metabolismo , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Orexinas/metabolismo , Pez Cebra
2.
J Neuroinflammation ; 17(1): 207, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650794

RESUMEN

BACKGROUND: Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS: Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS: We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS: These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.


Asunto(s)
Quimiocina CCL2/metabolismo , Etanol/toxicidad , Hipotálamo/metabolismo , Células Neuroepiteliales/metabolismo , Receptores CCR2/metabolismo , Caracteres Sexuales , Animales , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Etanol/administración & dosificación , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/embriología , Masculino , Células Neuroepiteliales/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Células Madre/efectos de los fármacos , Células Madre/metabolismo
3.
Alcohol Clin Exp Res ; 44(4): 866-879, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020622

RESUMEN

BACKGROUND: Prenatal exposure to ethanol (EtOH) has lasting effects on neuropeptide and neuroimmune systems in the brain alongside detrimental alcohol-related behaviors. At low-to-moderate doses, prenatal EtOH stimulates neurogenesis in lateral hypothalamus (LH) and increases neurons that express the orexigenic peptides hypocretin/orexin (Hcrt/OX) and melanin-concentrating hormone (MCH), and the proinflammatory chemokine CCL2, which through its receptor CCR2 stimulates cell differentiation and movement. Our recent studies demonstrated that CCL2 and CCR2 colocalize with MCH neurons and are involved in EtOH's stimulatory effect on their development but show no relation to Hcrt/OX. Here, we investigated another chemokine, CXCL12, and its receptor, CXCR4, which promote neurogenesis and neuroprogenitor cell proliferation, to determine if they also exhibit peptide specificity in their response to EtOH exposure. METHODS: Pregnant rats were intraorally administered a moderate dose of EtOH (2 g/kg/d) from embryonic day 10 (E10) to E15. Their embryos and postnatal offspring were examined using real-time quantitative PCR and immunofluorescence histochemistry, to determine if EtOH affects CXCL12 and CXCR4 and the colocalization of CXCR4 with Hcrt/OX and MCH neurons in the LH and with radial glia neuroprogenitor cells in the hypothalamic neuroepithelium (NEP). RESULTS: Prenatal EtOH strongly stimulated CXCL12 and CXCR4 in LH neurons of embryos and postnatal offspring. This stimulation was significantly stronger in Hcrt/OX than MCH neurons in LH and also occurred in radial glia neuroprogenitor cells dense in the NEP. These effects were sexually dimorphic, consistently stronger in females than males. CONCLUSIONS: While showing prenatal EtOH exposure to have a sexually dimorphic, stimulatory effect on CXCL12 and CXCR4 in LH similar to CCL2 and its receptor, these results reveal their distinct relationship to the peptide neurons, with the former closely related to Hcrt/OX and the latter to MCH, and they link EtOH's actions in LH to a stimulatory effect on neuroprogenitor cells in the NEP.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Quimiocina CXCL12/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Etanol/farmacología , Área Hipotalámica Lateral/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores CXCR4/efectos de los fármacos , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Embrión de Mamíferos , Células Ependimogliales/metabolismo , Área Hipotalámica Lateral/citología , Área Hipotalámica Lateral/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inmunohistoquímica , Melaninas/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR4/metabolismo
4.
J Neurosci ; 38(42): 9072-9090, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30201767

RESUMEN

Clinical and animal studies show that ethanol exposure and inflammation during pregnancy cause similar behavioral disturbances in the offspring. While ethanol is shown to stimulate both neuroimmune and neurochemical systems in adults, little is known about their anatomical relationship in response to ethanol in utero and whether neuroimmune factors mediate ethanol's effects on neuronal development and behavior in offspring. Here we examined in female and male adolescent rats a specific population of neurons concentrated in lateral hypothalamus, which coexpress the inflammatory chemokine C-C motif ligand 2 (CCL2) or its receptor CCR2 with the orexigenic neuropeptide, melanin-concentrating hormone (MCH), that promotes ethanol drinking behavior. We demonstrate that maternal administration of ethanol (2 g/kg/d) from embryonic day 10 (E10) to E15, while having little impact on glia, stimulates expression of neuronal CCL2 and CCR2, increases density of both large CCL2 neurons colocalizing MCH and small CCL2 neurons surrounding MCH neurons, and stimulates ethanol drinking and anxiety in adolescent offspring. We show that these neuronal and behavioral changes are similarly produced by maternal administration of CCL2 (4 or 8 µg/kg/d, E10-E15) and blocked by maternal administration of a CCR2 antagonist INCB3344 (1 mg/kg/d, E10-E15), and these effects of ethanol and CCL2 are sexually dimorphic, consistently stronger in females. These results suggest that this neuronal CCL2/CCR2 system closely linked to MCH neurons has a role in mediating the effects of maternal ethanol exposure on adolescent offspring and contributes to the higher levels of adolescent risk factors for alcohol use disorders described in women.SIGNIFICANCE STATEMENT Ethanol consumption and inflammatory agents during pregnancy similarly increase alcohol intake and anxiety in adolescent offspring. To investigate how neurochemical and neuroimmune systems interact to mediate these disturbances, we examined a specific population of hypothalamic neurons coexpressing the inflammatory chemokine CCL2 and its receptor CCR2 with the neuropeptide, melanin-concentrating hormone. We demonstrate in adolescent offspring that maternal administration of CCL2, like ethanol, stimulates these neurons and increases ethanol drinking and anxiety, and these effects of ethanol are blocked by maternal CCR2 antagonist and consistently stronger in females. This suggests that neuronal chemokine signaling linked to neuropeptides mediates effects of maternal ethanol exposure on adolescent offspring and contributes to higher levels of adolescent risk factors for alcohol use disorders in women.


Asunto(s)
Quimiocina CCL2/metabolismo , Etanol/administración & dosificación , Área Hipotalámica Lateral/metabolismo , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores CCR2/metabolismo , Caracteres Sexuales , Consumo de Bebidas Alcohólicas , Animales , Ansiedad/inducido químicamente , Conducta Animal , Recuento de Células , Femenino , Neuronas/metabolismo , Embarazo , Ratas Sprague-Dawley
5.
J Neurochem ; 135(5): 918-31, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26332891

RESUMEN

Ingestion of a high-fat diet composed mainly of the saturated fatty acid, palmitic (PA), and the unsaturated fatty acid, oleic (OA), stimulates transcription in the brain of the opioid neuropeptide, enkephalin (ENK), which promotes intake of substances of abuse. To understand possible underlying mechanisms, this study examined the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), and tested in hypothalamic and forebrain neurons from rat embryos whether PPARs regulate endogenous ENK and the fatty acids themselves affect these PPARs and ENK. The first set of experiments demonstrated that knocking down PPARδ, but not PPARα or PPARγ, increased ENK transcription, activation of PPARδ by an agonist decreased ENK levels, and PPARδ neurons coexpressed ENK, suggesting that PPARδ negatively regulates ENK. In the second set of experiments, PA treatment of hypothalamic and forebrain neurons had no effect on PPARδ protein while stimulating ENK mRNA and protein, whereas OA increased both mRNA and protein levels of PPARδ in forebrain neurons while having no effect on ENK mRNA and increasing ENK levels. These findings show that PA has a strong, stimulatory effect on ENK and weak effect on PPARδ protein, whereas OA has a strong stimulatory effect on PPARδ and weak effect on ENK, consistent with the inhibitory effect of PPARδ on ENK. They suggest a function for PPARδ, perhaps protective in nature, in embryonic neurons exposed to fatty acids from a fat-rich diet and provide evidence for a mechanism contributing to differential effects of saturated and monounsaturated fatty acids on neurochemical systems involved in consummatory behavior. Our findings show that PPARδ in forebrain and hypothalamic neurons negatively regulates enkephalin (ENK), a peptide known to promote ingestive behavior. This inverse relationship is consistent with our additional findings, that a saturated (palmitic; PA) compared to a monounsaturated fatty acid (oleic; OA) has a strong stimulatory effect on ENK and weak effect on PPARδ. These results suggest that PPARδ protects against the neuronal effects of fatty acids, which differentially affect neurochemical systems involved in ingestive behavior.


Asunto(s)
Encefalinas/metabolismo , Ácidos Grasos/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , PPAR delta/metabolismo , Prosencéfalo/citología , Animales , Células Cultivadas , Dieta Alta en Grasa , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ácido Oléico/farmacología , Ácido Palmítico/farmacología , ARN Mensajero , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Tiazoles/farmacología , Transfección
6.
J Neurosci ; 33(34): 13600-11, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966683

RESUMEN

Animal and clinical studies show that gestational exposure to nicotine increases the propensity of offspring to consume nicotine, but the precise mechanism mediating this behavioral phenomenon is unclear. The present study in Sprague Dawley rats examined the possibility that the orexigenic peptide systems, enkephalin (ENK) and orexin (OX), which are stimulated by nicotine in adult animals and promote consummatory behavior, may be similarly responsive to nicotine's stimulatory effect in utero while having long-term behavioral consequences. The results demonstrated that nicotine exposure during gestation at low doses (0.75 or 1.5 mg/kg/d) significantly increased mRNA levels and density of neurons that express ENK in the hypothalamic paraventricular nucleus and central nucleus of the amygdala, OX, and another orexigenic peptide, melanin-concentrating hormone, in the perifornical lateral hypothalamus in preweanling offspring. These effects persisted in the absence of nicotine, at least until puberty. Colabeling of the cell proliferation marker BrdU with the neuronal marker NeuN and peptides revealed a marked stimulatory effect of prenatal nicotine on neurogenesis, but not gliogenesis, and also on the number of newly generated neurons expressing ENK, OX, or melanin-concentrating hormone. During adolescence, offspring also exhibited significant behavioral changes, increased consumption of nicotine and other substances of abuse, ethanol and a fat-rich diet, with no changes in chow and water intake or body weight. These findings reveal a marked sensitivity during gestation of the orexigenic peptide neurons to low nicotine doses that may increase the offspring's propensity to overconsume substances of abuse during adolescence.


Asunto(s)
Amígdala del Cerebelo/citología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipotálamo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neurogénesis/efectos de los fármacos , Neuropéptidos/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Factores de Edad , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/crecimiento & desarrollo , Amígdala del Cerebelo/metabolismo , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Melaninas/genética , Melaninas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/genética , Orexinas , Fosfopiruvato Hidratasa , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Sci Rep ; 14(1): 3021, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321123

RESUMEN

The initiation of alcohol use early in life is one of the strongest predictors of developing a future alcohol use disorder. Clinical studies have identified specific behaviors during early childhood that predict an increased risk for excess alcohol consumption later in life. These behaviors, including increased hyperactivity, anxiety, novelty-seeking, exploratory behavior, impulsivity, and alcohol-seeking, are similarly stimulated in children and adolescent offspring of mothers who drink alcohol during pregnancy. Here we tested larval zebrafish in addition to young pre-weanling rats and found this repertoire of early behaviors along with the overconsumption of alcohol during adolescence to be increased by embryonic ethanol exposure. With hypocretin/orexin (Hcrt) neurons known to be stimulated by ethanol and involved in mediating these alcohol-related behaviors, we tested their function in larval zebrafish and found optogenetic activation of Hcrt neurons to stimulate these same early alcohol-related behaviors and later alcohol intake, suggesting that these neurons have an important role in producing these behaviors. Together, these results show zebrafish to be an especially useful animal model for investigating the diverse neuronal systems mediating behavioral changes at young ages that are produced by embryonic ethanol exposure and predict an increased risk for developing alcohol use disorder.


Asunto(s)
Alcoholismo , Etanol , Preescolar , Humanos , Embarazo , Femenino , Niño , Animales , Ratas , Adolescente , Orexinas/genética , Pez Cebra , Optogenética , Consumo de Bebidas Alcohólicas , Neuronas
8.
Cells ; 12(10)2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37408233

RESUMEN

Studies in zebrafish and rats show that embryonic ethanol exposure at low-moderate concentrations stimulates hypothalamic neurons expressing hypocretin/orexin (Hcrt) that promote alcohol consumption, effects possibly involving the chemokine Cxcl12 and its receptor Cxcr4. Our recent studies in zebrafish of Hcrt neurons in the anterior hypothalamus (AH) demonstrate that ethanol exposure has anatomically specific effects on Hcrt subpopulations, increasing their number in the anterior AH (aAH) but not posterior AH (pAH), and causes the most anterior aAH neurons to become ectopically expressed further anterior in the preoptic area (POA). Using tools of genetic overexpression and knockdown, our goal here was to determine whether Cxcl12a has an important function in mediating the specific effects of ethanol on these Hcrt subpopulations and their projections. The results demonstrate that the overexpression of Cxcl12a has stimulatory effects similar to ethanol on the number of aAH and ectopic POA Hcrt neurons and the long anterior projections from ectopic POA neurons and posterior projections from pAH neurons. They also demonstrate that knockdown of Cxcl12a blocks these effects of ethanol on the Hcrt subpopulations and projections, providing evidence supporting a direct role of this specific chemokine in mediating ethanol's stimulatory effects on embryonic development of the Hcrt system.


Asunto(s)
Quimiocinas , Etanol , Pez Cebra , Animales , Desarrollo Embrionario , Etanol/farmacología , Neuronas/fisiología , Orexinas
9.
Sci Rep ; 13(1): 8448, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231149

RESUMEN

Numerous studies in animals demonstrate that embryonic exposure to ethanol (EtOH) at low-moderate doses stimulates neurogenesis and increases the number of hypothalamic neurons expressing the peptide, hypocretin/orexin (Hcrt). A recent study in zebrafish showed that this effect on the Hcrt neurons in the anterior hypothalamus (AH) is area specific, evident in the anterior (aAH) but not posterior (pAH) part of this region. To understand specific factors that may determine the differential sensitivity to EtOH of these Hcrt subpopulations, we performed additional measures in zebrafish of their cell proliferation, co-expression of the opioid dynorphin (Dyn), and neuronal projections. In association with the increase in Hcrt neurons in the aAH but not pAH, EtOH significantly increased only in the aAH the proliferation of Hcrt neurons and their number lacking Dyn co-expression. The projections of these subpopulations differed markedly in their directionality, with those from the pAH primarily descending to the locus coeruleus and those from the aAH ascending to the subpallium, and they were both stimulated by EtOH, which induced specifically the most anterior subpallium-projecting Hcrt neurons to become ectopically expressed beyond the aAH. These differences between the Hcrt subpopulations suggest they are functionally distinct in their regulation of behavior.


Asunto(s)
Dinorfinas , Pez Cebra , Animales , Orexinas , Etanol/toxicidad , Neuronas/fisiología , Proliferación Celular
10.
Sci Rep ; 13(1): 1447, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702854

RESUMEN

Embryonic ethanol exposure in zebrafish and rats, while stimulating hypothalamic hypocretin/orexin (Hcrt) neurons along with alcohol consumption and related behaviors, increases the chemokine receptor Cxcr4 that promotes neuronal migration and may mediate ethanol's effects on neuronal development. Here we performed a more detailed anatomical analysis in zebrafish of ethanol's effects on the Cxcl12a/Cxcr4b system throughout the entire brain as it relates to Hcrt neurons developing within the anterior hypothalamus (AH) where they are normally located. We found that ethanol increased these Hcrt neurons only in the anterior part of the AH and induced ectopic Hcrt neurons further anterior in the preoptic area, and these effects along with ethanol-induced behaviors were completely blocked by a Cxcr4 antagonist. Analysis of cxcl12a transcripts and internalized Cxcr4b receptors throughout the brain showed they both exhibited natural posterior-to-anterior concentration gradients, with levels lowest in the posterior AH and highest in the anterior telencephalon. While stimulating their density in all areas and maintaining these gradients, ethanol increased chemokine expression only in the more anterior and ectopic Hcrt neurons, effects blocked by the Cxcr4 antagonist. These findings demonstrate how increased chemokine expression acting along natural gradients mediates ethanol-induced anterior migration of ectopic Hcrt neurons and behavioral disturbances.


Asunto(s)
Etanol , Pez Cebra , Animales , Ratas , Orexinas/metabolismo , Pez Cebra/metabolismo , Etanol/toxicidad , Etanol/metabolismo , Hipotálamo Posterior/metabolismo , Quimiocinas/metabolismo , Neuronas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-35176416

RESUMEN

Prenatal alcohol exposure (PAE) increases alcohol consumption and risk for alcohol use disorder. This phenomenon in rodents is suggested to involve a stimulatory effect of PAE, in female more than male offspring, on neurogenesis and density of neurons expressing neuropeptides in lateral hypothalamus (LH), including melanin-concentrating hormone (MCH), known to promote alcohol intake. With evidence suggesting a role for fibroblast growth factor 2 (FGF2) and its receptor FGFR1 in stimulating neurogenesis and alcohol drinking, we investigated here whether the FGF2-FGFR1 system is involved in the PAE-induced increase in MCH neurons, in postnatal offspring of pregnant rats given ethanol orally (embryonic day 10-15) at a low-moderate (2 g/kg/day) or high (5 g/kg/day) dose. Our results demonstrate that PAE at the low-moderate but not high dose stimulates FGF2 and FGFR1 gene expression and increases the density of MCH neurons co-expressing FGF2, only in females, but FGFR1 in both sexes. PAE induces this effect in the dorsal but not ventral area of the LH. Further analysis of FGF2 and FGFR1 transcripts within individual MCH neurons reveals an intracellular, sex-dependent effect, with PAE increasing FGF2 transcripts positively related to FGFR1 in the nucleus as well as cytoplasm of females but transcripts only in the cytoplasm of males. Peripheral injection of FGF2 itself (80 µg/kg, s.c.) in pregnant rats mimics these effects of PAE. Together, these results support the involvement of the FGF2-FGFR1 system in mediating the PAE-induced, sex dependent increase in density of MCH neurons, possibly contributing to increased alcohol consumption in the offspring.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Efectos Tardíos de la Exposición Prenatal , Animales , Etanol , Femenino , Factor 2 de Crecimiento de Fibroblastos/efectos adversos , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Masculino , Neuronas , Péptidos/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley
12.
Alcohol Clin Exp Res ; 34(1): 72-80, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19860804

RESUMEN

BACKGROUND: There is growing evidence suggesting that hypothalamic galanin (GAL), which is known to stimulate intake of a fat-rich diet, has a role in promoting the consumption of ethanol. The present study further examined this possibility in GAL knockout (GALKO) mice. METHODS: Two groups of female and male GALKO mice, compared to wild-type (WT) controls, were trained to voluntarily drink increasing concentrations of ethanol, while maintained on lab chow and water. They were examined in terms of their daily ethanol intake and preference, acute consumption of a high-fat diet, preference for flavored solutions, and expression of different peptides shown to stimulate ethanol intake. RESULTS: In the GALKO mice compared to WT, the results revealed: (i) a 35 to 45% decrease in ethanol intake and preference, which was evident only at the highest (15%) ethanol concentration, was stronger in female than in male mice, and was seen with comparisons to littermate as well as nonlittermate WT mice; (ii) a 48% decrease in acute intake of a fat-rich diet, again stronger in female than male mice; (iii) no difference in consumption of sucrose or quinine solutions in preference tests; (iv) a total loss of GAL mRNA in the hypothalamic paraventricular nucleus (PVN) of female and male mice; and (v) a gender-specific change in mRNA levels of peptides in the perifornical lateral hypothalamus (PFLH), orexin and melanin-concentrating hormone, which are known to stimulate ethanol and food intake and were markedly decreased in females while increased in males. CONCLUSIONS: These results provide strong support for a physiological role of PVN GAL in stimulating the consumption of ethanol, as well as a fat-rich diet. Ablation of the GAL gene produced a behavioral phenotype, particularly in females, which may reflect the functional relationship of galanin to ovarian steroids. It also altered the peptides in the PFLH, with their reduced expression contributing to the larger behavioral effects observed in females and their increased expression attenuating these effects in males.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Etanol/administración & dosificación , Galanina/deficiencia , Regulación de la Expresión Génica , Hormonas Hipotalámicas/biosíntesis , Hipotálamo/metabolismo , Consumo de Bebidas Alcohólicas/genética , Animales , Femenino , Galanina/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/fisiología , Hipotálamo/química , Hipotálamo/fisiología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Noqueados , Neuropéptidos/biosíntesis , Orexinas
13.
Alcohol Clin Exp Res ; 34(5): 886-96, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20331576

RESUMEN

BACKGROUND: Recent reports support the involvement of hypothalamic orexigenic peptides in stimulating ethanol intake. Our previous studies have examined the effects of ethanol on hypothalamic peptide systems of the paraventricular nucleus (PVN) and identified a positive feedback loop in which PVN peptides, such as enkephalin and galanin, stimulate ethanol intake and ethanol, in turn, stimulates the expression of these peptides. Recently, orexin (OX), a peptide produced mainly by cells in the perifornical lateral hypothalamus (PFLH), has been shown to play an important role in mediating the rewarding aspects of ethanol intake. However, there is little evidence showing the effects that ethanol itself may have on the OX peptide system. In order to understand the feedback relationship between ethanol and the OX system, the current investigation was designed to measure OX gene expression in the PFLH following acute as well as chronic ethanol intake. METHODS: In the first experiment, Sprague-Dawley rats were trained to voluntarily consume a 2 or 9% concentration of ethanol, and the expression of OX mRNA in the PFLH was measured using quantitative real-time polymerase chain reaction (qRT-PCR). The second set of experiments tested the impact of acute oral gavage of 0.75 and 2.5 g/kg ethanol solution on OX expression in the PFLH using qRT-PCR, as well as radiolabeled in situ hybridization. Further tests using digoxigenin-labeled in situ hybridization and immunofluorescence histochemistry allowed us to more clearly distinguish the effects of acute ethanol on OX cells in the lateral hypothalamic (LH) versus perifornical (PF) regions. RESULTS: The results showed chronic consumption of ethanol versus water to dose-dependently reduce OX mRNA in the PFLH, with a larger effect observed in rats consuming 2.5 g/kg/d (-70%) or 1.0 g/kg/d (-50%) compared to animals consuming 0.75 g/kg/d (-40%). In contrast to chronic intake, acute oral ethanol compared to water significantly enhanced OX expression in the PFLH, and this effect occurred at the lower (0.75 g/kg) but not higher (2.5 g/kg) dose of ethanol. Additional analyses of the OX cells in the LH versus PF regions identified the former as the primary site of ethanol's stimulatory effect on the OX system. In the LH but not the PF, acute ethanol increased the density of OX-expressing and OX-immunoreactive neurons. The increase in gene expression was detected only at the lower dose of ethanol (0.75 g/kg), whereas the increase in OX peptide was seen only at the higher dose of ethanol (2.5 g/kg). CONCLUSION: These results lead us to propose that OX neurons, while responsive to negative feedback signals from chronic ethanol consumption, are stimulated by acute ethanol administration, most potently in the LH where OX may trigger central reward mechanisms that promote further ethanol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Etanol/administración & dosificación , Regulación de la Expresión Génica , Área Hipotalámica Lateral/metabolismo , Neuropéptidos/biosíntesis , Animales , Biorretroalimentación Psicológica/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Área Hipotalámica Lateral/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Neuropéptidos/fisiología , Orexinas , Ratas , Ratas Sprague-Dawley , Recompensa
14.
Alcohol Clin Exp Res ; 34(5): 761-70, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20184566

RESUMEN

BACKGROUND: Ethanol may be consumed for reasons such as reward, anxiety reduction, or caloric content, and the opioid enkephalin (ENK) appears to be involved in many of these functions. Previous studies in Sprague-Dawley rats have demonstrated that ENK in the hypothalamic paraventricular nucleus (PVN) is stimulated by voluntary consumption of ethanol. This suggests that this opioid peptide may be involved in promoting the drinking of ethanol, consistent with our recent findings that PVN injections of ENK analogs stimulate ethanol intake. To broaden our understanding of how this peptide functions throughout the brain to promote ethanol intake, we measured, in rats trained to drink 9% ethanol, the expression of the ENK gene in additional brain areas outside the hypothalamus, namely, the ventral tegmental area (VTA), nucleus accumbens shell (NAcSh) and core (NAcC), medial prefrontal cortex (mPFC), and central nucleus of the amygdala (CeA). METHODS: In the first experiment, the brains of rats chronically drinking 1 g/kg/d ethanol, 3 g/kg/d ethanol, or water were examined using real-time quantitative polymerase chain reaction (qRT-PCR). In the second experiment, a more detailed, anatomic analysis of changes in gene expression, in rats chronically drinking 3 g/kg/d ethanol compared to water, was performed using radiolabeled in situ hybridization (ISH). The third experiment employed digoxigenin-labeled ISH (DIG) to examine changes in the density of cells expressing ENK and, for comparison, dynorphin (DYN) in rats chronically drinking 3 g/kg/d ethanol versus water. RESULTS: With qRT-PCR, the rats chronically drinking ethanol plus water compared to water alone showed significantly higher levels of ENK mRNA, not only in the PVN but also in the VTA, NAcSh, NAcC, and mPFC, although not in the CeA. Using radiolabeled ISH, levels of ENK mRNA in rats drinking ethanol were found to be elevated in all areas examined, including the CeA. The experiment using DIG confirmed this effect of ethanol, showing an increase in density of ENK-expressing cells in all areas studied. It additionally revealed a similar change in DYN mRNA in the PVN, mPFC, and CeA, although not in the NAcSh or NAcC. CONCLUSIONS: While distinguishing the NAc as a site where ENK and DYN respond differentially, these findings lead us to propose that these opioids, in response to voluntary ethanol consumption, are generally elevated in extra-hypothalamic as well as hypothalamic areas, possibly to carry out specific area-related functions that, in turn, drive animals to further consume ethanol. These functions include calorie ingestion in the PVN, reward and motivation in the VTA and NAcSh, response-reinforcement learning in the NAcC, stress reduction in the CeA, and behavioral control in the mPFC.


Asunto(s)
Encefalinas/biosíntesis , Etanol/administración & dosificación , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/psicología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Dinorfinas/biosíntesis , Dinorfinas/fisiología , Encefalinas/fisiología , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
15.
Neuroscience ; 443: 188-205, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31982472

RESUMEN

Clinical and animal studies show maternal alcohol consumption during pregnancy causes in offspring persistent alterations in neuroimmune and neurochemical systems known to increase alcohol drinking and related behaviors. Studies in lateral hypothalamus (LH) demonstrate in adolescent offspring that maternal oral administration of ethanol stimulates the neuropeptide, melanin-concentrating hormone (MCH), together with the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 which are increased in most MCH neurons. These effects, consistently stronger in females than males, are detected in embryos, not only in LH but hypothalamic neuroepithelium (NEP) along the third ventricle where neurons are born and CCL2 is stimulated within radial glia progenitor cells and their laterally projecting processes that facilitate MCH neuronal migration toward LH. With ethanol's effects similarly produced by maternal peripheral CCL2 administration and blocked by CCR2 antagonist, we tested here using in utero intracerebroventricular (ICV) injections whether CCL2 acts locally within the embryonic NEP. After ICV injection of CCL2 (0.1 µg/µl) on embryonic day 14 (E14) when neurogenesis peaks, we observed in embryos just before birth (E19) a significant increase in endogenous CCL2 within radial glia cells and their processes in NEP. These auto-regulatory effects, evident only in female embryos, were accompanied by increased density of CCL2 and MCH neurons in LH, more strongly in females than males. These results support involvement of embryonic CCL2/CCR2 neuroimmune system in radial glia progenitor cells in mediating sexually dimorphic effects of maternal challenges such as ethanol on LH MCH neurons that colocalize CCL2 and CCR2.


Asunto(s)
Hormonas Hipotalámicas , Tercer Ventrículo , Animales , Quimiocina CCL2/metabolismo , Células Ependimogliales/metabolismo , Femenino , Área Hipotalámica Lateral/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Masculino , Neuronas/metabolismo , Péptidos , Hormonas Hipofisarias , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores CCR2/metabolismo , Células Madre/metabolismo , Tercer Ventrículo/metabolismo
16.
Neuroscience ; 424: 155-171, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705896

RESUMEN

Maternal consumption of ethanol during pregnancy is known to increase the offspring's risk for developing alcohol use disorders and associated behavioral disturbances. Studies in adolescent and adult animals suggest the involvement of neuroimmune and neurochemical systems in the brain that control these behaviors. To understand the origin of these effects during early developmental stages, we examined in the embryo and neonate the effects of maternal intraoral administration of ethanol (2 g/kg/day) from embryonic day 10 (E10) to E15 on the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 in a specific, dense population of neurons in the lateral hypothalamus (LH), where they are closely related to an orexigenic neuropeptide, melanin-concentrating hormone (MCH), known to promote ethanol consumption and related behaviors. We found that prenatal ethanol exposure increases the expression and density of CCL2 and CCR2 cells along with MCH neurons in the LH and the colocalization of CCL2 with MCH. We also discovered that these effects are sexually dimorphic, consistently stronger in female embryos, and are blocked by maternal administration of a CCL2 antibody (1 and 5 µg/day, i.p., E10-E15) that neutralizes endogenous CCL2 and of a CCR2 antagonist INCB3344 (1 mg/day, i.p., E10-E15) that blocks CCL2's main receptor. These results, which in the embryo anatomically and functionally link the CCL2/CCR2 system to MCH neurons in the LH, suggest an important role for this neuroimmune system in mediating ethanol's sexually dimorphic, stimulatory effect on MCH neurons that may promote higher level of alcohol consumption described in females.


Asunto(s)
Quimiocina CCL2/biosíntesis , Etanol/administración & dosificación , Hipotálamo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores CCR2/biosíntesis , Caracteres Sexuales , Animales , Animales Recién Nacidos , Quimiocina CCL2/antagonistas & inhibidores , Etanol/toxicidad , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/embriología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores CCR2/antagonistas & inhibidores
17.
J Neurosci ; 28(46): 12107-19, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19005075

RESUMEN

Recent studies in adult and weanling rats show that dietary fat, in close association with circulating lipids, can stimulate expression of hypothalamic peptides involved in controlling food intake and body weight. In the present study, we examined the possibility that a fat-rich diet during pregnancy alters the development of these peptide systems in utero, producing neuronal changes in the offspring that persist postnatally in the absence of the diet and have long-term consequences. The offspring of dams on a high-fat diet (HFD) versus balanced diet (BD), from embryonic day 6 to postnatal day 15 (P15), showed increased expression of orexigenic peptides, galanin, enkephalin, and dynorphin, in the paraventricular nucleus and orexin and melanin-concentrating hormone in the perifornical lateral hypothalamus. The increased density of these peptide-expressing neurons, evident in newborn offspring as well as P15 offspring cross-fostered at birth to dams on the BD, led us to examine events that might be occurring in utero. During gestation, the HFD stimulated the proliferation of neuroepithelial and neuronal precursor cells of the embryonic hypothalamic third ventricle. It also stimulated the proliferation and differentiation of neurons and their migration toward hypothalamic areas where ultimately a greater proportion of the new neurons expressed the orexigenic peptides. This increase in neurogenesis, closely associated with a marked increase in lipids in the blood, may have a role in producing the long-term behavioral and physiological changes observed in offspring after weaning, including an increase in food intake, preference for fat, hyperlipidemia, and higher body weight.


Asunto(s)
Grasas de la Dieta/efectos adversos , Trastornos Nutricionales en el Feto/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Obesidad/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos , Regulación del Apetito/fisiología , Peso Corporal/fisiología , Proliferación Celular , Grasas de la Dieta/metabolismo , Femenino , Trastornos Nutricionales en el Feto/fisiopatología , Galanina/metabolismo , Hiperfagia/etiología , Hiperfagia/metabolismo , Hiperfagia/fisiopatología , Hormonas Hipotalámicas/metabolismo , Hipotálamo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Melaninas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Péptidos Opioides/metabolismo , Orexinas , Hormonas Hipofisarias/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
18.
Brain Res Mol Brain Res ; 135(1-2): 69-80, 2005 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15857670

RESUMEN

Evidence suggests that neuropeptide Y (NPY) and agouti-related protein (AgRP) in the arcuate nucleus (ARC) are modulated by glucoregulatory hormones and involved in maintaining normal eating patterns and glucose homeostasis in states of energy deficiency. This study investigated whether these peptides respond to glucose itself under conditions, e.g., before the nocturnal feeding cycle, when carbohydrate stores are low. After removal of food 3 h before dark onset, Sprague-Dawley rats were given a single, intraperitoneal (i.p.) injection of saline or 10% glucose (0.13 g/kg) and were sacrificed at different intervals, from 3.5 to 90 min later, for measurements of circulating hormones and metabolites or of NPY and AgRP mRNA in the ARC. With no change in insulin, leptin, or triglycerides, glucose injection produced a 1.8-mM rise in circulating glucose during the first 15 min, followed by a 30-60% reduction in NPY and AgRP mRNA at 30 and 60 min post-injection. A similar effect was observed with intraventricular administration of 5% glucose. At 90 min, however, this suppressive effect of i.p. glucose relative to saline was lost and actually reversed into a 50% increase in NPY and AgRP, possibly attributed to a decline in circulating glucose followed by a 50% rise in corticosterone at 60 min. These biphasic shifts over a 90-min period may reflect mechanisms underlying natural eating patterns at the onset of the nocturnal cycle, when spontaneous meals are approximately 90 min apart and rich in carbohydrate, glucose levels are low, and corticosterone and ARC peptides naturally peak.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Neuropéptido Y/metabolismo , Proteínas/metabolismo , Proteína Relacionada con Agouti , Animales , Conducta Animal , Glucemia , Recuento de Células/métodos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Corticosterona/sangre , Ensayo de Inmunoadsorción Enzimática , Hibridación in Situ/métodos , Insulina/sangre , Péptidos y Proteínas de Señalización Intercelular , Leptina/sangre , Masculino , Neuropéptido Y/genética , Proteínas/genética , ARN Mensajero/biosíntesis , Radiografía/métodos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo , Triglicéridos/sangre
19.
Brain Res ; 1036(1-2): 180-91, 2005 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15725416

RESUMEN

Neuropeptide Y (NPY) and agouti-related protein (AgRP), potent stimulants of feeding, have been linked in adult rats to both corticosterone (CORT) and dietary carbohydrate. To understand the significance of this relationship early in life, measurements were taken of these parameters at different ages around weaning, in rats given a choice of macronutrient diets or maintained on a carbohydrate-rich diet. The results demonstrate that, in both male and female rat pups, the expression and production of NPY and AgRP in the arcuate nucleus (ARC) peak on postnatal day 21 (P21), compared to P15 before weaning and P27 after weaning. These elevated levels of peptide were associated with peak levels of CORT and glucose and also a strong, natural preference for carbohydrate at weaning, which accounted for 55-65% of the pups' total diet. In subgroups defined by their body weight at these stages, rats with as little as 4% lower body weight (compared to higher weight pups) had 30-60% greater expression of NPY and AgRP in the ARC and elevated levels of CORT, with no difference in leptin or insulin. This response was significantly more pronounced at P21 than at P15 or P27. The importance of carbohydrate during this stage was suggested by additional results showing elevated NPY expression, CORT levels, body weight and inguinal fat pad weights in P27 pups raised on a 65% carbohydrate diet vs. 45% carbohydrate. These results suggest that hypothalamic NPY and AgRP, together with CORT, have glucoregulatory as well as feeding stimulatory functions that help mediate the transition from suckling of a fat-rich diet to independent feeding of a carbohydrate-rich diet. During this critical period, the carbohydrate together with the peptides and CORT provide the important signals, including elevated glucose, that promote de novo lipogenesis and enable weanling animals to survive periods of food deprivation.


Asunto(s)
Regulación del Apetito/fisiología , Corticosterona/metabolismo , Hipotálamo/metabolismo , Neuropéptido Y/fisiología , Proteínas/fisiología , Destete , Envejecimiento/metabolismo , Proteína Relacionada con Agouti , Animales , Peso Corporal/fisiología , Carbohidratos de la Dieta/metabolismo , Conducta Alimentaria/fisiología , Femenino , Glucosa/metabolismo , Hipotálamo/anatomía & histología , Péptidos y Proteínas de Señalización Intercelular , Masculino , Neuropéptido Y/metabolismo , Sistemas Neurosecretores/fisiología , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA