RESUMEN
Defining the molecular genetic alterations underlying pancreatic cancer may provide unique therapeutic insight for this deadly disease. Toward this goal, we report here an integrative DNA microarray and sequencing-based analysis of pancreatic cancer genomes. Notable among the alterations newly identified, genomic deletions, mutations, and rearrangements recurrently targeted genes encoding components of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, including all three putative DNA binding subunits (ARID1A, ARID1B, and PBRM1) and both enzymatic subunits (SMARCA2 and SMARCA4). Whereas alterations of each individual SWI/SNF subunit occurred at modest-frequency, as mutational "hills" in the genomic landscape, together they affected at least one-third of all pancreatic cancers, defining SWI/SNF as a major mutational "mountain." Consistent with a tumor-suppressive role, re-expression of SMARCA4 in SMARCA4-deficient pancreatic cancer cell lines reduced cell growth and promoted senescence, whereas its overexpression in a SWI/SNF-intact line had no such effect. In addition, expression profiling analyses revealed that SWI/SNF likely antagonizes Polycomb repressive complex 2, implicating this as one possible mechanism of tumor suppression. Our findings reveal SWI/SNF to be a central tumor suppressive complex in pancreatic cancer.
Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/fisiología , Genes Supresores de Tumor , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción/fisiología , Proteínas Cromosómicas no Histona/genética , Perfilación de la Expresión Génica , Humanos , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Factores de Transcripción/genética , TranscriptomaRESUMEN
Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46%) primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.
Asunto(s)
Neoplasias del Sistema Biliar/genética , Factor de Transcripción GATA6/genética , Amplificación de Genes , Neoplasias Pancreáticas/genética , Animales , Neoplasias del Sistema Biliar/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Cromosomas Humanos Par 18/genética , Factor de Transcripción GATA6/metabolismo , Perfilación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Ratones , Neoplasias Pancreáticas/metabolismo , Trasplante Heterólogo/patología , Trasplante Heterólogo/veterinariaRESUMEN
Intraductal papillary mucinous neoplasms (IPMNs) are one of the three known curable precursor lesions of invasive pancreatic ductal adenocarcinoma, an almost uniformly fatal disease. Cell lines from IPMNs and their invasive counterparts should be valuable to identify gene mutations critical to IPMN carcinogenesis, and permit high-throughput screening to identify drugs that cause regression of these lesions. To advance the study of the biological features of IPMNs, we attempted in vivo and in vitro growth of selected IPMNs based on the hypothesis that IPMNs could be grown in the most severely immunodeficient mice. We examined 14 cases by implanting them into nude, severe combined immunodeficient (SCID), and NOD/SCID/IL2Rgamma(null) (NOG) mice, in addition to direct culture, to generate tumor xenografts and cell lines. One sample was directly cultured only. Thirteen tumors were implanted into the three types of mice, including 10 tumors implanted into the triple immunodeficient NOG mice, in which the majority (8 of 10) grew. This included five IPMNs lacking an invasive component. One of the explanted IPMNs, with an associated invasive carcinoma, was successfully established as a cell line. Tumorigenicity was confirmed by growth in soft agar, growth in immunodeficient mice, and the homozygous deletion of p16/cdkn2a. Epithelial differentiation of the cell line was documented by cytokeratin expression. Patient origin was confirmed using DNA fingerprinting. Most non-invasive IPMNs grow in NOG mice. We successfully established one IPMN cell line, and plan to use it to clarify the molecular pathogenesis of IPMNs.
Asunto(s)
Adenocarcinoma Mucinoso/patología , Carcinoma Ductal Pancreático/patología , Carcinoma Papilar/patología , Neoplasias Pancreáticas/patología , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Dermatoglifia del ADN , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Persona de Mediana Edad , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Trasplante HeterólogoRESUMEN
BACKGROUND/AIMS: Pancreatic intraepithelial neoplasia (PanIN) is the most common noninvasive precursor to invasive pancreatic adenocarcinoma. Misexpression of microRNAs (miRNAs) is commonly encountered in invasive neoplasia; however, miRNA abnormalities in PanIN lesions have not been documented. METHODS: Three candidate miRNAs (miR-21, miR-155, and miR-221) previously reported as overexpressed in pancreatic cancers were assessed in 31 microdissected PanINs (14 PanIN-1, 9 PanIN-2, 8 PanIN-3) using quantitative reverse transcription PCR (qRT-PCR). Subsequently, miR-155 was evaluated by locked nucleic acid in situ hybridization (LNA-ISH) in PanIN tissue microarrays. RESULTS: Relative to microdissected non-neoplastic ductal epithelium, significant overexpression of miR-155 was observed in both PanIN-2 (2.6-fold, p = 0.02) and in PanIN-3 (7.4-fold, p = 0.014), while borderline significant overexpression of miR-21 (2.5-fold, p = 0.049) was observed in PanIN-3 only. In contrast, no significant differences in miR-221 levels were observed between ductal epithelium and PanIN lesions by qRT-PCR. LNA-ISH confirmed the aberrant expression of miR-155 in PanIN-2 (9 of 20, 45%) and in PanIN-3 (8 of 13, 62%), respectively, when compared with normal ductal epithelium (0 of 10) (p < 0.01). CONCLUSIONS: Abnormalities of miRNA expression are observed in the multistep progression of pancreatic cancer, with miR-155 aberrations demonstrable at the stage of PanIN-2, and miR-21 abnormalities at the stage of PanIN-3 lesions. and IAP.
Asunto(s)
Adenocarcinoma/genética , MicroARNs/biosíntesis , Neoplasias Pancreáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologíaRESUMEN
Resistance to apoptosis is a hallmark of many solid tumors, including pancreatic cancers, and may be the underlying basis for the suboptimal response to chemoradiation therapies. Overexpression of a family of inhibitor of apoptosis proteins (IAP) is commonly observed in pancreatic malignancies. We determined the therapeutic efficacy of recently described small-molecule antagonists of the X-linked IAP (XIAP) in preclinical models of pancreatic cancer. Primary pancreatic cancers were assessed for XIAP expression by immunohistochemistry, using a pancreatic cancer tissue microarray. XIAP small-molecule antagonists ("XAntag"; compounds 1396-11 and 1396-12) and the related compound 1396-28 were tested in vitro in a panel of human pancreatic cancer cell lines (Panc1, Capan1, and BxPC3) and in vivo in s.c. xenograft models for their ability to induce apoptosis and impede neoplastic growth. In addition, pancreatic cancer cell lines were treated with XAntags in conjunction with either tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or with radiation to determine potential synergy for such dual targeting of the apoptotic machinery. XIAP was overexpressed in 14 of 18 (77%) of primary pancreatic cancers. The XAntags1396-11 and 1396-12, but not the inactive isomer 1396-28, induced profound apoptosis in multiple pancreatic cancer cell lines tested in vitro, with a IC(50) in the range of 2 to 5 mumol/L. Mechanistic specificity of the XAntags for the baculoviral IAP repeat-2 domain of XIAP was shown by preferential activation of downstream "effector" caspases (caspase-3 and caspase-7) versus the upstream "initiator" caspase-9. S.c. BxPC3 xenograft growth in athymic mice was significantly inhibited by monotherapy with XAntags; treated xenografts showed marked apoptosis and increased cleavage of caspase-3. Notably, striking synergy was demonstrable when XAntags were combined with either TRAIL or radiation therapy, as measured by growth inhibition in vitro and reduced colony formation in soft agar of pancreatic cancer cell lines, at dosages where these therapeutic modalities had minimal to modest effects when used alone. Finally, XAntags in combination with the standard-of-care agent for advanced pancreatic cancer, gemcitabine, resulted in significantly greater inhibition of in vitro growth than gemcitabine alone. Our results confirm that pharmacologic inhibition of XIAP is a potent therapeutic modality in pancreatic cancers. These antagonists are independently capable of inducing pancreatic cancer cell death and also show synergy when combined with proapoptotic ligands (TRAIL), with radiation, and with a conventional antimetabolite, gemcitabine. These preclinical results suggest that targeting of the apoptotic machinery in pancreatic cancers with XAntags is a promising therapeutic option that warrants further evaluation.
Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Pancreáticas/patología , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores , Animales , Caspasas/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/efectos de la radiación , Proliferación Celular/efectos de la radiación , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Humanos , Técnicas para Inmunoenzimas , Ligandos , Masculino , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Compuestos de Fenilurea/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ensayo de Tumor de Célula Madre , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Rayos X , GemcitabinaRESUMEN
BACKGROUND: Somatic mutations of mitochondrial DNA (mtDNA) are increasingly being recognized in many human cancers, but automated sequencing of 16.5 kb of DNA poses an onerous task. We have recently described an oligonucleotide microarray (MitoChip) for rapid and accurate sequencing of the entire mitochondrial genome (Zhou et al., J Mol Diagnostics, 8: 9_14, 2006), greatly facilitating the analysis of mtDNA mutations in cancer. In this report, we perform a comprehensive cataloging of somatic mutations in the mitochondrial genome of human pancreatic cancers using our novel array-based approach. MATERIALS AND METHODS: MitoChip analysis was performed on DNA isolated from 15 histologically confirmed resection specimens of pancreatic ductal adenocarcinomas. In all cases, matched nonneoplastic pancreatic tissue was obtained as germline control for mtDNA sequence. DNA was extracted from snap-frozen cryostat-embedded specimens and hybridized to the sequencing microarray after appropriate polymerase chain reaction amplification and labeling steps. The vast majority of somatic mutational analyses of mtDNA in human cancers utilize lymphocyte DNA as germline control, without excluding the potential for organ-specific polymorphisms. Therefore, we also examined a series of 15 paired samples of DNA obtained from nonneoplastic pancreata and corresponding EBV-immortalized lymphoblastoid cell lines to determine whether lymphocyte DNA provides an accurate surrogate for the mtDNA sequence of pancreatic tissue. RESULTS: We sequenced 497,070 base pairs of mtDNA in the 15 matched samples of pancreatic cancer and nonneoplastic pancreatic tissue, and 467,269 base pairs (94.0%) were assigned by the automated genotyping software. All 15 pancreatic cancers demonstrated at least one somatic mtDNA mutation compared to the control germline DNA with a range of 1-14 alterations. Of the 71 somatic mutations observed in our series, 18 were nonsynonymous coding region alterations (i.e., resulting in an amino acid change), 22 were synonymous coding region alterations, and 31 involved noncoding mtDNA segments (including ribosomal and transfer RNAs). Overall, somatic mutations in the coding region most commonly involved the ND4, COI, and CYTB genes; of note, an A-G transition at nucleotide position 841 in the 12sRNA was observed in three independent samples. In the paired analysis of nonneoplastic pancreata and lymphoblastoid cell line DNA, 14 nucleotide discrepancies were observed out of 226,876 nucleotide sequences (a concordance rate of 99.99%), with 9 samples demonstrating a perfect match across all bases assigned. CONCLUSIONS: Our findings confirm that somatic mtDNA mutations are common in pancreatic cancers, and therefore, have the potential to be a clinically useful biomarker for early detection. Further, our studies confirm that lymphocyte DNA is an excellent, albeit not perfect, surrogate for nonneoplastic pancreatic tissues in terms of being utilized as a germline control. Finally, our report confirms the utility of a high-throughput array-based platform for mtDNA mutational analyses of human cancers.
Asunto(s)
ADN Mitocondrial/genética , ADN de Neoplasias/genética , Genoma Mitocondrial , Mutación/genética , Neoplasias Pancreáticas/genética , Análisis Mutacional de ADN , Genotipo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Páncreas/metabolismo , Reacción en Cadena de la Polimerasa , Estudios RetrospectivosRESUMEN
The p16(INK4A)/CDKN2A gene on chromosome 9p21 is a site of frequent allelic loss in human cancers, and in a subset of cases, homozygous deletions at this locus encompass the telomeric methylthioadenosine phosphorylase (MTAP) gene. The MTAP gene product is the principal enzyme involved in purine synthesis via the salvage pathway, such that MTAP-negative cancers are solely dependent on de novo purine synthesis mechanisms. Inhibitors of the de novo pathway can then be used to selectively blockade purine synthesis in cancer cells while causing minimal collateral damage to normal cells. In this study, we determine that 10 of 28 (35%) biliary tract cancers show complete lack of Mtap protein expression. In vitro analysis using a selective inhibitor of the de novo purine synthesis pathway, L-alanosine, shows robust growth inhibition in MTAP-negative biliary cancer cell lines CAK-1 and GBD-1 accompanied by striking depletion of intracellular ATP and failure to rescue this depletion via addition of exogenous methylthioadenosine, the principal substrate of the MTAP gene product; in contrast, no significant effects were observed in MTAP-expressing HuCCT1 and SNU308 cell lines. Colony formation studies confirmed that L-alanosine reduced both number and size of CAK-1 colonies in soft agar assays. Knockdown of Mtap protein by RNA interference in L-alanosine-resistant HuCCT1 cells conferred sensitivity to this agent, confirming that intracellular Mtap protein levels determine response to L-alanosine. Inhibitors of de novo purine synthesis can be a potential mechanism-based strategy for treatment of biliary tract cancers, one third of which show complete loss of MTAP function.
Asunto(s)
Neoplasias del Sistema Biliar/genética , Eliminación de Gen , Homocigoto , Purina-Nucleósido Fosforilasa/genética , Secuencia de Bases , Neoplasias del Sistema Biliar/enzimología , Neoplasias del Sistema Biliar/patología , Línea Celular Tumoral , Cartilla de ADN , Humanos , Reacción en Cadena de la PolimerasaRESUMEN
Pancreatic cancer, the fourth leading cause of cancer death in the United States, is frequently associated with the amplification and deletion of specific oncogenes and tumor-suppressor genes (TSGs), respectively. To identify such novel alterations and to discover the underlying genes, we performed comparative genomic hybridization on a set of 22 human pancreatic cancer cell lines, using cDNA microarrays measuring approximately 26,000 human genes (thereby providing an average mapping resolution of <60 kb). To define the subset of amplified and deleted genes with correspondingly altered expression, we also profiled mRNA levels in parallel using the same cDNA microarray platform. In total, we identified 14 high-level amplifications (38-4934 kb in size) and 15 homozygous deletions (46-725 kb). We discovered novel localized amplicons, suggesting previously unrecognized candidate oncogenes at 6p21, 7q21 (SMURF1, TRRAP), 11q22 (BIRC2, BIRC3), 12p12, 14q24 (TGFB3), 17q12, and 19q13. Likewise, we identified novel polymerase chain reaction-validated homozygous deletions indicating new candidate TSGs at 6q25, 8p23, 8p22 (TUSC3), 9q33 (TNC, TNFSF15), 10q22, 10q24 (CHUK), 11p15 (DKK3), 16q23, 18q23, 21q22 (PRDM15, ANKRD3), and Xp11. Our findings suggest candidate genes and pathways, which may contribute to the development or progression of pancreatic cancer.
Asunto(s)
ADN/genética , Eliminación de Gen , Técnicas Genéticas , Hibridación de Ácido Nucleico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , ADN/metabolismo , ADN Complementario/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Homocigoto , Humanos , Hibridación Fluorescente in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismoRESUMEN
PURPOSE: High-throughput chemosensitivity testing of low-passage cancer cell lines can be used to prioritize agents for personalized chemotherapy. However, generating cell lines from primary cancers is difficult because contaminating stromal cells overgrow the malignant cells. EXPERIMENTAL DESIGN: We produced a series of hypoxanthine phosphoribosyl transferase (hprt)-null immunodeficient mice. During growth of human cancers in these mice, hprt-null murine stromal cells replace their human counterparts. RESULTS: Pancreatic and ovarian cancers explanted from these mice were grown in selection media to produce pure human cancer cell lines. We screened one cell line with a 3,131-drug panel and identified 77 U.S. Food and Drug Administration (FDA)-approved drugs with activity, and two novel drugs to which the cell line was uniquely sensitive. Xenografts of this carcinoma were selectively responsive to both drugs. CONCLUSION: Chemotherapy can be personalized using patient-specific cell lines derived in biochemically selectable mice.
Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Digitoxina/farmacología , Nogalamicina/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Medicina de Precisión , Animales , Antibióticos Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Cardiotónicos/farmacología , Femenino , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Subunidad gamma Común de Receptores de Interleucina , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/patología , Células Tumorales CultivadasRESUMEN
Pancreatic cancer is a deadly disease, and new therapeutic targets are urgently needed. We previously identified DNA amplification at 7q21-q22 in pancreatic cancer cell lines. Now, by high-resolution genomic profiling of human pancreatic cancer cell lines and human tumors (engrafted in immunodeficient mice to enrich the cancer epithelial fraction), we define a 325 Kb minimal amplicon spanning SMURF1, an E3 ubiquitin ligase and known negative regulator of transforming growth factor ß (TGFß) growth inhibitory signaling. SMURF1 amplification was confirmed in primary human pancreatic cancers by fluorescence in situ hybridization (FISH), where 4 of 95 cases (4.2%) exhibited amplification. By RNA interference (RNAi), knockdown of SMURF1 in a human pancreatic cancer line with focal amplification (AsPC-1) did not alter cell growth, but led to reduced cell invasion and anchorage-independent growth. Interestingly, this effect was not mediated through altered TGFß signaling, assayed by transcriptional reporter. Finally, overexpression of SMURF1 (but not a catalytic mutant) led to loss of contact inhibition in NIH-3T3 mouse embryo fibroblast cells. Together, these findings identify SMURF1 as an amplified oncogene driving multiple tumorigenic phenotypes in pancreatic cancer, and provide a new druggable target for molecularly directed therapy.
Asunto(s)
Amplificación de Genes/fisiología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Ubiquitina-Proteína Ligasas/genética , Animales , Comunicación Celular , Línea Celular , Línea Celular Tumoral , Humanos , Hibridación Fluorescente in Situ , Ratones , Invasividad Neoplásica , OncogenesRESUMEN
Curcumin is a naturally occurring polyphenolic compound found in the turmeric, which is used as food additive in Indian cooking and as a therapeutic agent in traditional Indian medicine. Curcumin is currently under investigation as a chemotherapeutic and chemopreventive agent in adult cancer models at both pre-clinical and clinical levels. In this preliminary study, we show that curcumin is effective in causing cell cycle arrest, inducing apoptosis, and suppressing colony formation in the Ewing sarcoma cell line SK-NEP-1. Curcumin causes upregulation of cleaved caspase 3 and downregulation of phospho-Akt, producing apoptosis in Ewing sarcoma cells at an inhibitory concentration 50% (IC50) of approximately 4 µM. Our findings indicate a need for further evaluation of curcumin in chemotherapy and chemoprevention of Ewing sarcoma.
Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Óseas/patología , Ciclo Celular/efectos de los fármacos , Curcumina/uso terapéutico , Sarcoma de Ewing/patología , Western Blotting , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Citometría de Flujo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sarcoma de Ewing/tratamiento farmacológicoRESUMEN
BACKGROUND: Pancreatic cancer is a near uniformly lethal disease and a better understanding of the molecular basis of this malignancy may lead to improved therapeutics. The Axl receptor tyrosine kinase is implicated in cellular transformation and tumor progression, although its role in pancreatic cancer has not been previously documented. RESULTS: Axl labeling was present in 54 of 99 (55%), and was absent in 45 of 99 (45%) cases, respectively. Axl expression in pancreatic cancer was significantly associated with lymph node metastases (p < 0.01), and a shorter median survival (12 versus 18 months, p < 0.01), than in tumors with negative labeling. Stable knockdown of Axl resulted in significant reduction in cell viability (p < 0.001), anchorage independent growth (p = 0.0031), as well as attenuation of migratory (p < 0.001) and invasive properties (p < 0.005), compared to vector-transfected cells. Profound inhibition of p42/p44 MAP kinase and PI-3kinase/Akt effector pathways was observed in MIAPaCa-2 cells with loss of Axl function. The reduction in invasion and migration upon Axl knockdown was mirrored by a decrease in the amounts of activated (GTP-bound) GTPase proteins Rho and Rac, significant downregulation in transcript levels of the epithelial mesenchymal transition (EMT)-associated transcription factors slug, snail and twist, and significant decrease in matrix metalloproteinase MMP-9 mRNA levels. MATERIALS: The immunohistochemical expression of Axl protein was assessed in a panel of 99 archival pancreatic cancers. Endogenous Axl expression was stably downregulated by lentiviral short hairpin shRNA directed against AXL mRNA in MIAPaCa-2 cells, and the effects on cell viability, anchorage independent growth, invasion, migration and intracellular effector pathways was assessed, by comparing to lentiviral vector-transfected cells. CONCLUSION: Expression of Axl tyrosine kinase in pancreatic cancers confers an adverse prognostic influence, and represents a new therapeutic target in this malignancy.